نقش نانوذرات نقره و هیومیک اسید بر عملکرد کمی و کیفی ذرت در شرایط کم آبیاری
محورهای موضوعی : افزایش عملکرد
مصطفی صادقی کوچصفهانی
1
,
مرتضی سام دلیری
2
*
,
علی افتخاری
3
,
توفیق احمدی
4
,
سید امیرعباس موسوی میرکلائی
5
1 - دانشجوی دکتری گروه زراعت، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
2 - دانشیار گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد چالوس. چالوس، ایران
3 - استادیار گروه زراعت، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران.
4 - استادیارگروه زراعت، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران.
5 - استادیار گروه زراعت، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران.
کلید واژه: تنش خشکی, پروتئین, شاخص برداشت, عملکرد دانه,
چکیده مقاله :
هدف: استفاده از هیومیک اسید و نانوذرات نقره بهعنوان راهکارهایی زیستسازگار در مدیریت تنش خشکی، نقش مؤثری در بهبود عملکرد ذرت دارد.
مواد و روش ها: بهمنظور بررسی اثرات هیومیک اسید و نانوذرات نقره، آزمایشی طی سالهای زراعی 1398-1399 و 1399-1400 در مزرعه تحقیقاتی دانشگاه آزاد اسلامی واحد چالوس بصورت کرتهای دوبار خردشده در قالب طرح بلوكهای كامل تصادفی در سه تكرار انجام شد. تیمارهای آزمایشی در کرت اصلی شامل آبیاری در سه سطح (100 درصد نیاز آبی به عنوان شاهد، 80 ، 60 درصد نیاز آبی) و کرت فرعی شامل محلول¬پاشی نانو ذره نقره در چهار سطح (شاهد بدون مصرف ، 60، 80 و 100 میکرولیتر بر لیتر) و کرت فرعی فرعی شامل هیومیک اسید در سه سطح (شاهد، 500 و 1000 گرم در هکتار) قرار گرفت.
یافته ها: نتایج نشان داد بیشترین عملکرد دانه در 100 درصد نیاز آبی با مصرف 60 میکرولیتر نانو نقره و 500 گرم در هکتار اسید هیومیک در سال اول به میزان 10582 کیلوگرم در هکتار حاصل شد. بیشترین شاخص برداشت نیتروژن در 100 درصد نیاز آبی با مصرف 100 میکرولیتر نانو نقره و 500 گرم در هکتار اسید هیومیک در سال اول به میزان 45/1 درصد حاصل شد و کمترین شاخص برداشت نیتروژن تحت تیمار 80 درصد نیاز آبی و مصرف 100 میکرولیتر نانو نقره و 1000 گرم در هکتار هیومیک اسید در سال اول به میزان 09/1 درصد حاصل شد
نتیجه گیری: یافتههای این پژوهش نشان داد که مصرف همزمان اسید هیومیک و نانوذرات نقره میتواند نقش مؤثری در بهبود عملکرد و کیفیت ذرت تحت شرایط کمآبیاری ایفا کند. بهطور خاص، کاربرد ۵۰۰ گرم در هکتار اسید هیومیک همراه با ۶۰ میکرولیتر در لیتر نانوذرات نقره در شرایط آبیاری کامل، بیشترین عملکرد دانه را ایجاد کرد و نشان داد که این ترکیب از نظر عملی میتواند بهعنوان بهترین راهکار مدیریتی معرفی شود.
Objective: The use of humic acid and silver nanoparticles as eco-friendly strategies for managing drought stress plays a significant role in improving corn yield.
Material and methods: To investigate the effects of humic acid and silver nanoparticles, an experiment was conducted 2019–2020 and 2020–2021 growing seasons at the research farm of Islamic Azad University, Chalus Branch. A split-split plot arrangement based on a randomized complete block design (RCBD) with three replications was used. The main plot included three irrigation regimes (100%, 80%, and 60% of crop water requirement), the sub-plot included four levels of silver nanoparticles (0, 60, 80, and 100 µL/L), and the sub-sub-plot included three levels of humic acid (0, 500, and 1000 g/ha).
Results: Results showed that the highest grain yield (10582 kg/ha) was recorded under full irrigation with 60 µL/L silver nanoparticles and 500 g/ha humic acid. A slightly lower yield (10,506 kg/ha) was obtained under 80% irrigation with the same level of nanoparticles and 1000 g/ha humic acid. The highest nitrogen harvest index (1.45%) occurred under full irrigation with 100 µL/L silver nanoparticles and 500 g/ha humic acid, whereas the lowest (1.09%) was under 80% irrigation with 100 µL/L nanoparticles and 1000 g/ha humic acid.
Conclusion: The findings of this study revealed that the simultaneous application of humic acid and silver nanoparticles can effectively enhance the yield and quality of corn under drought conditions. In particular, applying 500 g/ha of humic acid together with 60 µL/L of silver nanoparticles under full irrigation resulted in the highest grain yield, indicating that this combination can be introduced as the most practical management strategy.
Keywords: Drought stress, Protein, Harvest index, Grain yield
Abdel-Azeem, A., Nada, A. A., O'Donovan, A., Thakur, V. K., & Elkelish, A. (2020). Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity. Journal of renewable Materials, 8(2), 171-185.
Ahmed, S., Kalhoro, S. A., Ahmed, B., Sarfaraz, Q., Rodeni, M. A., Hameed, K., & Ullah, S. (2024). Impact of Humic Acid on the Morphological Components and Growth Parameters of Wheat (Triticum Aestivum L.) Under Dry Climate of Uthal. Journal of Applied Research in Plant Sciences, 5(02), 226-236.
Azeem, K., Naz, F., Jalal, A., Galindo, F. S., Teixeira Filho, M. C., & Khalil, F. (2021). Humic acid and nitrogen dose application in corn crop under alkaline soil conditions. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(10), 657-663.
Faostat, F. A. O. (2023). Production crops. http://www. fao. org/faostat/en/# data. QC [URL].
Fathi, A., Barari Tari, D., Fallah Amoli, H., & Niknejad, Y. (2020). Study of energy consumption and greenhouse gas (GHG) emissions in corn production systems: influence of different tillage systems and use of fertilizer. Communications in soil science and plant analysis, 51(6), 769-778.
Gautam, R. K., & Navaratna, D. (2021). Humic Substances: Its Toxicology, Chemistry and Biology Associated. In Humic Substances (pp. 97-110). IntechOpen London.
Ghadirnezhad Shiade, S. R., Fathi, A., Taghavi Ghasemkheili, F., Amiri, E., & Pessarakli, M. (2023). Plants’ responses under drought stress conditions: Effects of strategic management approaches—A review. Journal of plant Nutrition, 46(9), 2198-2230.
Guo, Y., Ma, Z., Ren, B., Zhao, B., Liu, P., & Zhang, J. (2022). Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture, 12(4), 448.
Hafeez, A., Ali, B., Javed, M. A., Saleem, A., Fatima, M., & Soudy, F. A. (2023). Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics‐assisted breeding. Planta, 258(5), 97.
Hemati, A., Alikhani, H. A., Ajdanian, L., Babaei, M., Asgari Lajayer, B., & van Hullebusch, E. D. (2022). Effect of different enriched vermicomposts, humic acid extract and indole-3-acetic acid amendments on the growth of Brassica napus. Plants, 11(2), 227.
Jackson, M. L. (1958). Soil chemical analysis.,(Constable & Co Ltd: London). pp: 183-192.
Janeeshma, E., Habeeb, H., Shackira, A. M., Sinisha, A. K., Mirshad, P. P., Khoshru, B., ... & Mitra, D. (2024). Strigolactone and analogues: a new generation of plant hormones with multifactorial benefits in environmental sustainability. Environmental and Experimental Botany, 105775.
Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., ... & Tan, D. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific reports, 9(1), 12014.
Liu, M., Wang, C., Wang, F., & Xie, Y. (2019). Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Applied soil ecology, 142, 147-154.
Martin, D. L., Stegman, E. C., & Fereres, E. (1990). Irrigation scheduling principles. IN: Management of Farm Irrigation Systems. American Society of Agricultural Engineers, St. Joseph, MI. 1990. p 155-203.
Masood, S., Khan, N. R., Fayyaz, M., Qayum, M., Khatoon, A., & Jamil, M. (2025). Synthesis of Plant-Derived Smoke-Mediated Silver Nanoparticles and its Stimulatory Effects on Maize Growth Under Wastewater Stress. Arabian Journal for Science and Engineering, 50(1), 65-75.
Moustafa-Farag, M., Mohamed, H. I., Mahmoud, A., Elkelish, A., Misra, A. N., Guy, K. M., ... & Zhang, M. (2020). Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants, 9(6), 724.
Nasiri, Y. (2022). Evaluation of organic and biofertilizer inputs application on yield, yield components and essential oil content of marigold (Calendula officinalis L.). Journal of Agricultural Science and Sustainable Production. 32(2), 97-113. (In Persian).
Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D., & Sani, B. (2021). Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. Journal of Soil Science and Plant Nutrition, 21(4), 2642-2651.
Nasrollahzade Asl, V., S. Moharramnejad, M. Yusefi, A. Bandehhagh, and L. Ibrahimi. 2017. Evaluation of Grain Yield of Maize (Zea mays L.) Hybrides Under Water Limitation. Journal of Agricultural Science and Sustainable Production. 27(2), 85-96. (In Persian).
Nassar, M. A. A., & Al-Qaltaqge, O. T. (2022). Relationship of Irrigation Intervals, Silicon, and Nano-Silver to Maize Productivity Under Soil Affected by Salinity. Egyptian Academic Journal of Biological Sciences, H. Botany, 13(1), 49-56.
Nassiri Mahallati, M., Bahamin, S., Fathi, A., & Beheshti, S. A. (2022). The effect of drought stress on yield and yield components of maize using meta-analysis method. Applied Field Crops Research, 35(1), 53-35. (In Persian).
Prakoso, T., Sulistyaningsih, E., & Purwanto, B. H. (2020). Effect of humic acid on the growth and yield of two maize (Zea mays L.) cultivars on andisol. Ilmu Pertanian (Agricultural Science), 5(1), 25-34.
Rahouma, A., & Mahmud, A. (2021). Maize growth and yield response to different rates of humic acid and zinc. Alexandria Science Exchange Journal, 42(4), 823-829.
Rajput, P., Kumar, P., Priya, A. K., Kumari, S., Shiade, S. R. G., Rajput, V. D., ... & Rensing, C. (2024). Nanomaterials and biochar mediated remediation of emerging contaminants. Science of The Total Environment, 916, 170064.
Rekaby, S. A., Al-Huqail, A. A., Gebreel, M., Alotaibi, S. S., & Ghoneim, A. M. (2023). Compost and humic acid mitigate the salinity stress on quinoa (Chenopodium quinoa Willd L.) and improve some sandy soil properties. Journal of Soil Science and Plant Nutrition, 23(2), 2651-2661.
Savarese, C., Cozzolino, V., Verrillo, M., Vinci, G., De Martino, A., Scopa, A., & Piccolo, A. (2022). Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism. Plant and Soil, 481(1), 285-314.
Shiade, S. R. G., Fathi, A., Rahimi, R., & DahPahlavan, S. (2024a). Crop Adaptation to Climate Change: Improvements in Photosynthesis. In Handbook of Photosynthesis (pp. 676-684). CRC Press.
Shiade, S. R. G., Rahimi, R., Zand-Silakhoor, A., Fathi, A., Fazeli, A., Radicetti, E., & Mancinelli, R. (2024b). Enhancing seed germination under abiotic stress: exploring the potential of nano-fertilization. Journal of Soil Science and Plant Nutrition, 24(3), 5319-5341.
Siddiqi, K. S., & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale research letters, 11, 1-10.
Sigamoney, M., Shaik, S., Govender, P., & Krishna, S. B. N. (2016). African leafy vegetables as bio-factories for silver nanoparticles: a case study on Amaranthus dubius C Mart. Ex Thell. South African Journal of Botany, 103, 230-240.
Soliman, M., Qari, S. H., Abu-Elsaoud, A., El-Esawi, M., Alhaithloul, H., & Elkelish, A. (2020). Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiologiae Plantarum, 42, 1-16.
Tadayyon, A., & Beheshti, S. (2016). Effect of foliar applications of humic acid, Iron and Zinc on some characteristics of negro (Guizotia abyssinica L.). Journal of Crop Ecophysiology.38:283-296. (In Persian).
Terán-Samaniego, K., Robles-Parra, J. M., Vargas-Arispuro, I., Martínez-Téllez, M. Á., Garza-Lagler, M. C., Félix-Gurrlola, D., ... & Espinoza-López, P. C. (2025). Agroecology and Sustainable Agriculture: Conceptual Challenges and Opportunities—A Systematic Literature Review. Sustainability, 17(5), 1805.
Wulandari, P., Sulistyaningsih, E., Handayani, S., & Purwanto, B. H. (2019). Growth and yield response of maize (Zea mays L.) on acid soil to different rates of humic acid and NPK fertilizer. Ilmu Pertanian (Agricultural Science), 4(2), 76-84.
Wyszkowski, M., Kordala, N., & Brodowska, M. S. (2023). Trace element content in soils with nitrogen fertilisation and humic acids addition. Agriculture, 13(5), 968.
Pourgholam-Amiji, M., Liaghat, A., Khoshravesh, M., & Azamathulla, H. M. (2021). Improving rice water productivity using alternative irrigation (case study: north of Iran). Water Supply, 21(3), 1216-1227.
Maroufpoor, S., Bozorg-Haddad, O., Maroufpoor, E., Gerbens-Leenes, P. W., Loáiciga, H. A., Savic, D., & Singh, V. P. (2021). Optimal virtual water flows for improved food security in water-scarce countries. Scientific Reports, 11(1), 21027.
Alsudays, I. M., Alshammary, F. H., Alabdallah, N. M., Alatawi, A., Alotaibi, M. M., Alwutayd, K. M., ... & Awad-Allah, M. M. (2024). Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biology, 24(1), 191.
Abu-Ria, M. E., Elghareeb, E. M., Shukry, W. M., Abo-Hamed, S. A., & Ibraheem, F. (2024). Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC Plant Biology, 24(1), 514.
Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., ... & Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management, 263, 107447.
Jing, J., Zhang, S., Yuan, L., Li, Y., Chen, C., & Zhao, B. (2022). Humic acid modified by being incorporated into phosphate fertilizer increases its potency in stimulating maize growth and nutrient absorption. Frontiers in Plant Science, 13, 885156.
Sauberlich, H. E., Chang, W. Y., & Salmon, W. D. (1953). The amino acid and protein content of corn as related to variety and nitrogen fertilization. The Journal of nutrition, 51(2), 241-250.