بررسی حذف فلزات سنگین با استفاده از کامپوزیت نانو ذارت رس تثبیت شده بر روی سطح کیتوزان
محورهای موضوعی :
تحقیقات در علوم مهندسی سطح و نانو مواد
قدرت اله موسوی ممبینی
1
,
خوشناز پاینده
2
*
,
لاله رومیانی
3
1 - گروه محیط زیست، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
2 - گروه خاک شناسی، واحد اهواز، دانشگاه آزاد اسلامی ، اهواز، ایران
3 - گروه شیلات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
تاریخ دریافت : 1402/04/19
تاریخ پذیرش : 1402/06/21
تاریخ انتشار : 1402/06/31
کلید واژه:
پساب کارخانه پودر ماهی,
فلزات سنگین,
کامپوزیت,
نانوذرات رس,
کیتوزان,
چکیده مقاله :
این تحقیق با هدف بررسی تاثیر کامپوزیت نانو ذارت رس تثبیت شده بر روی سطح کیتوزان در حذف فلزات روی، مس، آهن و آلومینیوم از پساب کارخانه پودر ماهی در سال 1397انجام شد. کیتوزان از پوست ماهی کپور معمولی (Cyprinus carpio) تهیه شد. در دو غلظت 2/0 و 5/0 درصد ماده جاذب و در زمانهای تماس 60 و 120 دقیقه، فلزات روی و آلومینیوم در مقایسه با فلزات مس و آهن بالاترین میزان جذب را داشتند و در زمان تماس 180 دقیقه فلز آهن بالاترین درصد جذب را داشت(05/0>P). در غلظتهای 8/0 و 1 درصد ماده جاذب در هر سه زمان، فلز روی بالاترین درصد حذف و آلومینیوم کمترین درصد حذف (05/0>P) و دو فلز آهن و مس بدون اختلاف معنیدار با یکدیگر در رتبه دوم قرار گرفتند(05/0<P). در غلظت ماده جاذب 1 درصد و زمان 180 دقیقه، به عنوان بهترین غلظت و زمان، درصد جذب فلزات روی، مس، آهن و آلومینیوم به ترتیب 66/93، 33/90، 33/90 و 66/87 درصد بود که نشان داد نانوکامپوزیت کیتوزان ـ رس به خوبی قادر به حذف این فلزات از پساب کارخانه تولید پودر ماهی بود. نتایج مطالعه حاضر نشان داد که میزان جذب فلز توسط نانوکامپوزیت کیتوزان خاک رس با غلظت جاذب و زمان تماس مرتبط است و می توان از نانوکامپوزیت کیتوزان ـ خاک رس برای حذف و کاهش سطح آلودگی فلزات سنگین در پساب پودر ماهی و سایر کارخانه های مواد غذایی استفاده کرد.
چکیده انگلیسی:
This research aimed to investigate the effect of nanoclay composite stabilized on chitosan surface in removing zinc, copper, iron and aluminum metals from fish meal Company effluent in 2017. Chitosan was prepared from common carp (Cyprinus carpio) skin. The amount of absorption of zinc, copper, iron and aluminum metals by chitosan-clay nanocomposite was investigated in five concentrations of 0, 0.2, 0.5, 0.8 and 1 weight percentage and at contact times of 60, 120 and 180 minutes. . In two concentrations of 0.2% and 0.5% of adsorbent and in contact times of 60 and 120 minutes, zinc and aluminum metals had the highest absorption rate compared to copper and iron metals, and in contact time of 180 minutes, iron metal had the highest absorption percentage (P<0.05). In concentrations of 0.8% and 1% of adsorbent in all three times, zinc metal has the highest removal percentage and aluminum has the lowest removal percentage (P<0.05) and two metals iron and copper rank second without any significant difference were placed (P<0.05). The results of the present study showed that the amount of metal absorption by chitosan-clay nanocomposite is related to the concentration of the adsorbent and the contact time and chitosan-clay nanocomposite can be used to remove and reduce the level of heavy metal contamination in the wastewater of fishmeal and other food factories.
منابع و مأخذ:
Sarker, Al Masud, DM. Deepo, K. Das, R .Nandi and et.al "Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review." Chemosphere (2023) 138861.
Chen, JQ. Wu, S. Sung. "Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment." Journal of Hazardous Materials, 424 (2022) 127257.
Mitra, AJ. Chakraborty, AM .Tareq, TB. Emran and et al. "Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity." Journal of King Saud University-Science , 3 (2022) 101865.
Anyanwu, AN. Ezejiofor, ZN. Igweze, OE. Orisakwe. "Heavy metal mixture exposure and effects in developing nations: an update." Toxics , 4 (2018) 65.
Shukla, RS. Pai. "Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibres." Bioresource technology , 13 (2005) 1430.
N .Sunny, L. Mathai. "Physicochemical process for fish processing wastewater." Efficient Management of Wastewater from Manufacturing, 4 (2015) 113.
Crini. "Non-conventional low-cost adsorbents for dye removal: a review." Bioresource technology , 9 (2006) 1061.
Wang, H. Wu. "Environmental-benign utilisation of fly ash as low-cost adsorbents." Journal of hazardous materials , 3 (2006) 482.
Yazdani, A. Bhatnagar, R. Vahala. "Synthesis, characterization and exploitation of nano-TiO2/feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As)." Chemical Engineering Journal ,316 (2017) 370.
Cao, H .Cao, Y. Zhu, S. Wang, D. Qian, G. Chen, M. Sun, W. Huang. "Rapid and effective removal of Cu2+ from aqueous solution using novel chitosan and laponite-based nanocomposite as adsorbent." Polymers , 1 (2016) 5.
Costa, VG. Teixeira, MC. Delpech, JVS. Souza, M A.S. Costa, "Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride." Carbohydrate Polymers, 133 (2015) 245.
س. بوداقپور و ح. باقری، کاربرد کیتوزان در حذف فلزات سنگین از آب و فاضلاب. ششمین کنکره ملی مهندسی عمران. سمنان,
م. ناظمی و ف. زابلی، بررسی کاربرد کیتوزان در حذف مس و آهن از روغن سویا. مجله بیولوژی کاربردی، 11 ( 1400)5.
Radian, Y.G. Mishael, Characterizing and designing polycation–clay nanocomposites as a basis for imazapyr controlled release formulation. Environmental Science and Technology, 42 (2008) 1511.
ف. هاشمزاده، ا.ح. حسنی، ه. ا. پناهی، س.م. برقعی، کارایی نانو لولههای کربنی چند جداره اصلاح شده با عامل کیتوزان در حذف فلزات سنگین سرب، روی و کادمیوم از محیط های آبی. مجله مهندسین مشاور طرح و تحقیقات آب و فاضلاب،3 (1396) 1 .
ز. رحیمیزاده ، ا. حمیدیان، س.و . حسینی، حذف فلزات سنگین از پساب توسط نانوکامپوزیت کیتوزان ـ رس. محیط زیست طبیعی، منابع طبیعی ایران.69 (1395) 669.
غ. باقری مرندی، ز. پیوندکرمانی، م. کردتبار، سنتز نانوکامپوزیتهای هیدروژلی بر پایه کلاژن با استفاده از مونت موریلونیت و مطالعه رفتار جذب سطحی کادمیم از محلولهای آبی. مجله علوم و تکنولوژی پلیمر. 1 (1392) 73.
American Public Health Association. Standard methods for the examination of water and wastewater. Vol. 6. American Public Health Association., 1926.
L. Chang, G.Tsai, Response surface optimization and kinetics of isolating chitin from pink shrimp (Soleno ceramelantho) shell waste. Journal of Agricultural Food Chemistry, 5 (1997) 1900.
Wang, H.Wu, Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials, 136 (2006) 482.
Standard Methods for the Examination of Water and Wastewater 2005. 21th edn, American Public Health Association/American Water Works Association/Water Environment Federation. Washington DC, USA.
Asrari, H. Tavallali, M. Hagshenas, Removal of Zn(II) and Pb(II) ions Using Rice Husk in Food Industrial Wastewater. Journal of Applied Sciences and Environmental Management, 4(2010) 159.
م. خدادادی، م.ح. ساقی، ن. آزادی ، ش. صادقی، بررسی کارایی کامپوزیت نانوذرات مغناطیسی آهن-زیرکونیوم/کیتوزان، جهت حذف کروم شش ظرفیتی از محیط های آبی. مجله دانشگاه علوم پزشکی مازندران. 26 (1395) 70.
Kanchana, T. Gomathi, V. Geetha & P. N. Sudha. Adsorption analysis of Pb (II) by nanocomposites of chitosan with methyl cellulose and clay. Der Pharmacia Letter, 4(2012) 1071.
Prakash, P.N. Sudha, N.G. Renganathan, Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environmental Science and Pollution Research, 19 (2012) 2930.
Chen, J. Hu, D.Shao, , J. Li, Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). Journal of hazardous materials, 2(2009) 923.
Sobhanardakani, R. Zandipak, H.Parvizimosaed, , JavanshirKhoei, A., Moslemi, M., Tahergorabi, M., Hosseini, S.H.&Delfieh, P. 2014. Efficiency of Chitosan for the Removal of Pb (II), Fe (II) and Cu (II) Ions from Aqueous Solutions. Iranian Journal of Toxicology, 8, 1145-1151.
Mori, K.& Kanai, S. 2007. Development of Ruthenium Hydroxyapatite-encapsulated super paramagnetic ɤ-Fe2O3 nanocrystallites as an efficient oxidation catalyst by molecular Oxygen. Chemistry of Materials,19,1249-1256.
ا.کاظمینژاد، ل. احمدیزاده ، بررسی اثر pH در حذف یون مس از محیطهای آبی با استفاده از نانو ذرات آهن اکسید و نانوکامپوزیتهای آهن اکسید/هیدروکسی آپاتیت. مجله پژوهش سیستم های بس ذرهای، 5 (1392) 41.
R.Yazdani, E.Virolainen, K.Conley, R.Vahala, Chitosan–Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers, 10 (2018) 1.
Yousefi, M.A. Zazouli, Removal of Heavy Metals from Solid Wastes Leachates Coagulation-Flocculation Process. Journal of Applied Sciences, 11(2008) 2142.
Hosseinifard, H.Ghorbani, M. Aghazadeh, M. Hosseinifard, Removal of lead from Aqueous Solutions Using Manganese Dioxide Nanoparticles Synthesized by Electrochemical Method. Journal of Environmental Sciences, 13 (2016) 25.
Kakavandi, R.R ,Kalantary, A.Esrafily, A.J. Jafari , A.Azari, Isotherm, kinetic and thermodynamic of Reactive Blue 5 (RB5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite. Journal of Color Science and Technology, 3 (2013) 237.
L. Cervera, M.C. Arnal, M.D.L. Guardia, Removal of heavy metals by using adsorption on alumina or chitosan. Analytical and Bioanalytical Chemistry, 6(2003) 820.
Cheng, , A. Tan, Y.Tao, D. Shan, K.E. Ting , X.J. Yin, Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater. International Journal of Photoenergy, 12(2012), 18.
ب.کاکاوندی ، م. مختاری، ر.رضایی کلانتری ، ا.احمدی، ن.راستکاری، م.فاتحی، ع. آذری، سنتز و ارزیابی کارایی نانو کامپوزیت مغناطیسی کربن فعال – آهن صفر/نقره (PAC-Fe/Ag) در حذف فنل از محیط آبی. مجله سلامت و محیط، 3 (1393) 399.
س. صداقت، حذف یون سرب از آب با استفاده از نانوکامپوزیت نانورس/ کیتوزان/نانولوله کربنی چند دیواره. نشریه پژوهش های کاربردی در شیمی. 4(1393) 57.