مروری بر فرایند سنتز پلی ال نانوذرات مغناطیسی کاربید کبالت
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادمهدی کبریایی 1 * , علی قاسمی 2 , محمدرضا لقمان 3 , شهاب ترکیان 4
1 - گروه مواد مهندسی، مجتمع علم مواد و مواد پیشرفته الکترومغناطیس، دانشگاه صنعتی مالکاشتر، اصفهان، ایران
2 - استاد تمام، گروه مواد مهندسی، مجتمع علم مواد و مواد پیشرفته الکترومغناطیس، دانشگاه صنعتی مالکاشتر، اصفهان، ایران
3 - استاد تمام، گروه مواد مهندسی، مجتمع علم مواد و مواد پیشرفته الکترومغناطیس، دانشگاه صنعتی مالکاشتر، اصفهان، ایران
4 - استادیار، گروه مواد مهندسی، مجتمع علم مواد و مواد پیشرفته الکترومغناطیس، دانشگاه صنعتی مالکاشتر، اصفهان، ایران
کلید واژه: سنتز پلی ال, کاربید کبالت, آهنرباهای دائمی, نانو ذرات مغناطیسی,
چکیده مقاله :
این مقاله سنتز نانوذرات کاربید کبالت را از طریق روش احیا پلیال بررسی میکند و مورفولوژی سوزنی و خواص مغناطیسی آنها را مورد بررسی قرار میدهد. این مطالعه وادارندگی در دمای اتاق بیش از kOe 3.4 و مغناطش اشباع بیش از kJm-320 را نشان می دهد .ترکیب فازهای Co3C و Co2C، همراه با عواملی مانند اندازه ذرات و مورفولوژی، بر ویژگیهای آهنربای دائمی تأثیر میگذارند. با این حال، محدودیتهایی در دماهای بالا به دلیل تجزیه غیرقابل برگشت ایجاد میشوند. علاوه بر این در فرآیند پلیول با PVP نشان داده شده است که باعث ایجاد ذرات کاربید کبالت با ساختار Co3C با وادارندگی بیشتر میشود. استفاده از آنیونهای هیدروکسید و کلرید در فرآیند پلیال، نانوکامپوزیتهای کبالت-کاربید و نانوذرات تک فاز Co2C را به همراه دارد که هر کدام خواص مغناطیسی متمایزی از خود نشان میدهند. سنتز تحت یک میدان مغناطیسی خارجی بالا منجر به تولید میکروسیم های کاربید کبالت-کبالت با مورفولوژی و ترکیب کنترل شده میشود. این مطالعه همچنین سنتز موفقیتآمیز نانوذرات مغناطیسی کاربید کبالت را از طریق یک فرآیند پلیال اصلاحشده بدون کاتالیزورهای خاکی کمیاب نشان میدهد که مقادیر مغناطش و وادارندگی مناسبی را در دمای اتاق به نشان میدهد. همچنین تاثیر پارامترهای واکنش، مانند دما، غلظت یون هیدروکسیل، و مدت زمان، بر ساختار کریستالوگرافی و خواص مغناطیسی نیز بررسی شده است.
This review explores the synthesis of cobalt carbide nanoparticles through a polyol reduction method, highlighting their acicular morphology, cluster assembly, and magnetic properties. The study reveals room temperature coercivities exceeding 3.4 kOe and maximum energy products surpassing 20 kJ m-3. The composition of Co3C and Co2C phases, along with factors such as particle size and morphology, crucially influences permanent magnet characteristics. The acicular shape enhances coercivity and offers potential for particle alignment in nanocomposite cores. However, limitations arise at elevated temperatures due to irreversible dissociation. Further investigation into optimizing particle size, chemistry, and morphology is warranted. Additionally, the polyol process with PVP is shown to induce the formation of Co3C-structured Co carbide particles with enhanced coercivity. The use of hydroxide and chloride anions in the polyol process yields exchange-coupled cobalt–carbide nanocomposites and single-phase Co2C nanoparticles, each exhibiting distinct magnetic properties. Synthesis under a high external magnetic field results in cobalt–cobalt carbide microwires with controlled morphology and composition. The study also demonstrates the successful synthesis of cobalt carbide magnetic nanoparticles via a modified polyol process without rare-earth catalysts, showcasing promising magnetization and coercivity values at room temperature. The influence of reaction parameters, such as temperature, hydroxyl ion concentrations, and duration, on the crystallographic structure and magnetic properties is elucidated.
[1] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu."Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient."Advanced materials, 7 (2011) 821-842.
[2] M.J. Kramer, R.W. McCallum, I.A. Anderson, S. Constantinides. "Prospects for non-rare earth permanent magnets for traction motors and generators, 7(2012)752-763.
[3] J. M. D. Coey, "Advances in Magnetics." IEEE Transactions on Magnetics, 12 (2011) 4671.
[4] Rs A. McCurrie, Ferromagnetic materials: structure and properties. Academic Press, 1994.
[5] S.Sugimoto, "Current status and recent topics of rare-earth permanent magnets." Journal of Physics D: Applied Physics , 6 (2011) 064001.
[6] H. R. Kirchmayr, "Permanent magnets and hard magnetic materials." Journal of Physics D: Applied Physics , 11 (1996) 2763.
[7] F. Fievet, J.P. Lagier, B. Blin, B Beaudoin, M. Figlarz. "Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles." Solid State Ionics, 32(1989) 198-205.
[8] M.A. Willard, LK Kurihara, E.E .Carpenter, S. Calvin, V.G. Harris. "Chemically prepared magnetic nanoparticles." International materials reviews ,3-4 (2004) 125-170.
[9] N. Chakroune, G. Viau, S. Ammar, L. Poul, D. Veautier, M.M. Chehimi, C. Mangeney, F. Villain, and F.Fiévet. "Acetate-and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies." Langmuir, 15 (2005) 6788-6796.
[10] V.G. Harris, Y. Chen, A. Yang, S. Yoon, Z .Chen, A.L. Geiler, J. Gao, C.N Chinnasamy, L.H Lewis. "High coercivity cobalt carbidenanoparticles processed via polyol reaction: a new permanent magnet material." Journal of Physics D:Applied Physics, 16 (2010) 165003.
[11] N. Chakroune, G. Viau, C. Ricolleau, F. Fiévet-Vincent, F. Fiévet."Cobalt-based anisotropic particles prepared by the polyol process." Journal of materials chemistry , 2 (2003) 312-318.
[12] C. N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, A. Narayanasamy, K. Sato, S. Hisano."Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticlesthrough polyol process." Journal of applied physics , 10 (2005) 10J309.
[13] G. Viau, C Garcıa, T. Maurer, G Chaboussant, F. Ott, Y Soumare, J.Y. Piquemal. "Highly crystalline cobalt nanowires with high coercivity prepared by soft chemistry." physica status solidi (a), 4(2009) 663-666.
[14] Y. Soumare, C Garcia, T Maurer, G Chaboussant, F. Ott, F Fiévet, JY Piquemal, G Viau. "Kinetically controlled synthesis of hexagonally close‐packedcobalt nanorods with high magnetic coercivity." Advanced Functional Materials , 12 (2009) 1971-1977.
[15] K. J. Carroll, Z. J. Huba, R.S. Spurgeon, M.Qian, Sh. N. Khanna, D. M. Hudgins, M. L. Taheri, E. E. Carpenter"Magnetic properties of Co2C and Co3C nanoparticles and their assemblies." Applied physics letters, 1 (2012) 012409.
[16] M. Zamanpour, S.P. Bennett, L. Majidi, Y. Chen, V.G. Harris. "Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method." Journal of Alloys and Compounds, 625 (2015) 138-143.
[17] E.P. Wohlfarth. "Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles." Journal of Applied Physics , 3 (1958) 595-596.
[18] D. Kodama, K. Shinoda, K. Sato, Y. Konno, R. J. Joseyphus, K. Motomiya, H. Takahashi, T. Matsumoto, Y. Sato, K. Tohji, B. Jeyadevan. "Chemical synthesis of sub‐micrometer‐to nanometer‐sized magnetic FeCo dice." Advanced Materials , 23 (2006) 3154-3159.
[19] M.J. Rosen, J.T. Kunjappu. Surfactants and interfacial phenomena. John Wiley & Sons, (2012)1-98
[20] W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. McConnellet al. "FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and nearinfrared agents." Nature materials , 12 (2006) 971-976.
[21] A.A. Farghaly, Z.J. Huba, E.E. Carpenter "Magnetic field assisted polyol synthesis of cobalt carbide and cobalt microwires." Journal of Nanoparticle Research , 10 (2012) 1-5.
[22] M.A. Bousnina, A. Dakhlaoui-Omrani, F .Schoenstein, Y. Soumare, A.H. Barry, J.Y. Piquemal, J.Yves. Piquemal, G. Viau, S. Mercone, and N. Jouini. "Enhanced magnetic behavior of Cobalt nano-rods elaborated by the polyol process assisted with an external magnetic field." Nanomaterials , 2 (2020) 334.
[23] R.J. Joseyphus, T. Matsumoto, H .Takahashi, D. Kodama, K. Tohji, B. Jeyadevan. "Designed synthesis of cobalt and its alloys by polyol process." Journal of Solid State Chemistry ,11 (2007) 3008-3018.
[24] C.T. Lynch, R. Summitt, A. Sliker. CRC handbook of materials science. Vol. 1. Boca Raton: CRC press, 1974.
[25] S. Ram, "Allotropic phase transformations in HCP, FCC and BCC metastable structures in Conanoparticles." Materials Science and Engineering: A, 304 (2001) 923-927.
[26] T. Hinotsu, B. Jeyadevan, C. N. Chinnasamy, K. Shinoda, K. Tohji,"Size and structure control of magnetic nanoparticles by using a modified polyol process." Journal of applied physics, 11(2004) 7477-7479.
[27] Z.J. Huba. Synthesis and characterization of cobalt carbide based nanomaterials. Virginia Commonwealth University, 2014.
[28] C. Osorio-Cantillo, O. Perales-Perez . "Synthesis and characterization of metastable nanocrystalline cobalt." Journal of Applied Physics, 7 (2009) 07A332.
[29] B. Wiley, T. Herricks, Y. G. Sun, and Y. N. Xia, Nano Lett. 4 (2004).2057
[30] S. Fujieda, A. Yomogida, K. Shinoda, S. Suzuki. "Magnetic properties of cobalt-based carbide particles synthesized by the polyol process." IEEE Magnetics Letters, 7 (2016) 1-4.
[31] M. Yabushita, A. Neya, K. Endo, M. Nakaya, K. Kanie, A. Muramatsu."Simple Liquid-Phase Synthesis of Cobalt Carbide (Co2C) Nanoparticles and Their Use as Durable Electrocatalysts." Materials transactions (2021) MT-M2021147.
[32] Y. Qie, Y. Liu, F. Kong, Z .Yang, H. Yang. "High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction." Nano Research, 5 (2022) 3901-3906.
[33] Y. Zhang, Y. Zhu, K. Wang, D. Li, D .Wang, F. Ding, D. Meng, X. Wang, C. Choi, Z. Zhang. "Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties." Journal of Magnetism and Magnetic Materials, 456 (2018) 71-77.
[34] X. Shen, T. Zhang, H.Y. Suo, L. Yan, L. Huang, C. Ma, L. Li, X. Wen, Y. Li, Y. Yang. "A facile one-pot method for synthesis of single phase Co2C with magnetic properties." Materials Letters, 271 (2020) 127783.