نانو اکسید منیزیم یک تثبیت کننده سبز کم کربن برای تثبیت خاک های حاوی پسماند جامد شهری
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو مواد
1 - گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: نانواکسیدمنیزیم, تثبیت خاک, درشت ساختاری, ریزساختاری,
چکیده مقاله :
این تحقیق با هدف کمک به محیط زیست بوسیله مواد نانو جهت افزایش مقاومت خاک های حاوی پسماند جامد شهری می باشد. نانومواد به دلیل ماهیت غیرسمی و مصرف انرژی کمتر موردنیاز برای تولید، در مهندسی ژئوتکنیک و ژئومحیط زیست پذیرفته شده اند. از این رو در این مطالعه چهار درصد مختلف از نانواکسیدمنیزیم (25/.، 5/.، 75/. و 1) به¬عنوان یک ماده تثبیت¬کننده در خاک های حاوی درصد مختلف از پسماندجامدشهری (15، 25، 35 و 45%) مورد استفاده قرار گرفته است. نتایج آزمون مقاومت فشاری در حالت خشک و در سیکل های تر و خشک نشان می دهد که، نمونه های حاوی 15% پسماند که با 1% نانواکسیدمنیزیم تثبیت شده اند می توانند دوام و رفتار مقاومتی بهتری را نشان دهند. این نتیجه از دید آزمون میکروسکوپ الکترونی نیز با تشکیل ساختار فلوکه شده مورد تایید قرار گرفت. از این رو استفاده از نانواکسیدمنیزیم در خاک های حاوی پسماندجامدشهری با مقدار بهینه می تواند در حل مشکلات خاک مؤثر واقع شود.
This study aims to help the environment with nano materials to increase the strength of soils containing municipal solid waste. Nanomaterials have been accepted in geotechnical and geo-environmental engineering due to their non-toxic nature and less energy consumption required for production. Therefore, in this study, four different percentages of Nano-MgO (0.25, 0.5, 0.75 and 1%) as a stabilizer in soils containing different percentages of municipal solid waste (15, 25, 35 and 45%) has been used. The results of the unconfined compressive strength test in dry state and in wet and dry cycles show that the specimens containing 15% waste which are stabilized with 1% Nano-MgO can show better durability and strength behavior. This result was also confirmed by the scanning electron microscope test with the formation of a flocculated structure. Therefore, the use of Nano-MgO in soils containing municipal solid waste with an optimal amount can be effective in solving soil problems.
[1] A. Zukri, Pekan soft clay treated with hydrated lime as a method of soil stabilizer. Procedia Engineering, 53 (2013) 37-41.
[2] S.Hamidi, S. M. Marandi, Clay concrete and effect of clay minerals types on stabilized soft clay soils by epoxy resin. Applied Clay Science, 151, (2018) 92-101.
[3] M. Salimi, A. Ghorbani, Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science, 184 (2020) 105390.
[4] E.Emmanuel, C. C. Lau, V.Anggraini, P. Pasbakhsh, Stabilization of a soft marine clay using halloysite nanotubes: A multi-scale approach. Applied Clay Science, 173 (2019) 65-78.
[5] M. H.Ghobadi, Y.Abdilor, R. Babazadeh, Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73(2) (2014). 611-619.
[6] A. Ohadian, N. Khayat, M. Mokhberi,. Microstructural analysis of marl stabilized with municipal solid waste and nano-MgO. Journal of Rock Mechanics and Geotechnical Engineering. (2024).
[7] A. Ghorbani, H. Hasanzadehshooiili, M. Mohammadi, F. Sianati, M.Salimi, L.Sadowski, J.Szymanowski, Effect of selected nanospheres on the mechanical strength of lime-stabilized high-plasticity clay soils. Advances in Civil Engineering, (2019).
[8] A. H.Vakili, J. Ghasemi, M. R. bin Selamat, M.Salimi, M. S. Farhadi, Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Construction and Building Materials, 193 (2018). 405-415.
[9] H. Mola-Abasi, A.Khajeh, S. Naderi Semsani, Variables controlling tensile strength of stabilized sand with cement and zeolite. Journal of adhesion science and Technology, 32(9) (2018) 947-962.
[10] A. Li, W. Ge , L. Liu, G. Qiu, Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environmental Research, 212 (2022) 113341.
[11] H. Harsh, A. A. B. Moghal, R. M. Rasheed, A. Almajed, State-of-the-Art Review on the Role and Applicability of Select Nano-Compounds in Geotechnical and Geoenvironmental Applications. Arabian .Journal for Science and Engineering, (2022) 1-25.
[12] L. V. Vijayan, J. P. A. Jose, Stability Studies Of Cohesive Soil With Nano Magnesium And Zinc Oxide. Materials and Technology, 56(2) (2022) 187-191.
[13] Y. Li, J. Zhao, , X. Du, , Y.Sun, , G.Song, , H.Miao, The optimization of the properties of sodium silicate bonded ceramic sand by nano-oxide particles and ultrasonication. International Journal of Metalcasting, 16(1) (2022) 234-241.
[14] W. Wang, Y. Wang, B.Lv, C. Li, H. Kong. Strength characteristics of cement-reinforced recycled aggregate modified with nano-MgO as road bases. Case Studies in Construction Materials, 17(2022) e01456.
[15] ASTM. Standard Test Method for Particle-Size Analysis of Soils. ASTM D422-63. West Conshohocken, PA 19428-2959, United States; 2007.
[16] ASTM. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM D4318. West Conshohocken, PA 19428-2959, United States (2017).
[17] ASTM. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3). ASTM D698. West Conshohocken, PA 19428-2959, United States. (2021).
[18] ASTM. Standard Test Methods for Unconfined Compressive Strength of Cohesive Soil. ASTM D2166. West Conshohocken, PA 19428-2959, United States, (2006).
[19] BS EN, Non-destructive testing. X-ray diffraction from polycrystalline and amorphous materials Procedures. 13925-2:2003
[20] EPA, Wastes - Non-Hazardous Waste - Municipal Solid Waste, (2013) 38–40.
[21] Y.Ge, J. P. Schimel, P. A. Holden, Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental science & technology, 45(4) (2011)1659-1664.
[22] ASTM D559-03. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures.
[23] L.Ge, C. C.Wang, C. W.Hung, W. C. Liao, H.Zhao, Assessment of strength development of slag cement stabilized kaolinite. Construction and Building Materials, 184 (2018) 492-501.
[24] M.Saadat, M. Bayat, Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 17(1) (2022) 80-91.
[25] A. S. Muntohar, Evaluation the using of plastic sack rubbish as fabrics on expansive embankment
[26] A.Ohadian, N. Khayat, M. Mokhberi, Long-term and microstructural studies of soft clay stabilization using municipal solid waste and Nano-MgO as an Eco-Friendly Method. Anthropogenic Pollution, 7(1) (2023) 35-54.
[27] R.Bahrami, N. Khayat, A. Nazarpour, Laboratory investigation on physical-mechanical characteristics and microstructure of a clayey gypsiferous soil in the presence of chemical accelerator. KSCE Journal of Civil Engineering, 25(9) (2021) 3273-3288.
[28] R.Bahrami, N. Khayat, A. Nazarpour, Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil. Geomechanics and Engineering, 23(2) (2020) 103-113