مطالعه نظری پایداری داروی دارای عامل آلکیلهکننده کلرامبوسیل با نانولولههای کربنی و نانولولههای بور نیتریدی : روشهای مکانیک کوانتومی/مکانیک مولکولی (QM/MM)
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادمحمد حسن جمشیدی 1 , ندا حسن زاده 2 , حوریه یحیایی 3 , امیر بهرامی 4
1 - گروه شیمی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه شیمی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - گروه شیمی، واحد زنجان، دانشگاه آزاد اسلامی،زنجان، ایران
4 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: مکانیک کوانتومی (QM) , مکانیک مولکولی (MM) , کلرامبوسیل, عامل آلکیلهکننده, نانولولههای کربنی تک جداره (SWCNTs) و نانولولههای نیترید بور (BNNTs) ,
چکیده مقاله :
نانولولهها بهعنوان وسیلهای برای کاهش عوارض جانبی داروهای شیمیدرمانی و تسهیل رساندن کارآمدتر دارو به بافتهای هدف عمل میکنند. این مطالعه بر دو نوع نانوحامل تمرکز دارد: نانولولههای کربنی تک جداره و نانولولههای نیترید بور، که هر کدام داروی دارای عامل آلکیلهکننده را حمل میکنند: کلرامبوسیل) این تحقیق به بررسی پایداری این حامل¬ها در دماها و شرایط حلال مختلف می¬پردازد. با استفاده از روشهای محاسبه مکانیک کوانتومی، تعامل بین ترکیبات دارویی ضد سرطان کلرامبوسیل با دو نانو حامل در طیفی از دماها و محیطهای حلالی متفاوت مورد بررسی قرار گرفت. با بررسی پارامترهای ترمودینامیکی از طریق محاسبات مکانیک مولکولی مقادیر مربوط به پارامترهای سختی، قطبیت، انرژی آزاد گیبس و همچنین گپ هومو و لوموی ترکیبات محاسبه شد. همچنین با استفاده از محاسبات مکانیک مولکولی، میدان های نیروی بهینه و کمترین حالت انرژی در هر حلال تعیین شد. یافته¬های این تحقیق نویدبخش توسعه سیستم¬های دارورسانی هدفمند و حفظ این ترکیبات دارویی حیاتی است.
Nanotubes serve as a means to reduce the side effects of chemotherapy drugs and facilitate more efficient drug delivery to target tissues. This study focuses on two types of nanocarriers: single-walled carbon nanotubes and boron nitride nanotubes, each of which carries a drug with an alkylating agent: chlorambucil. This research investigates the stability of these carriers at different temperatures and solvent conditions. Using quantum mechanical calculation methods, the interaction between the anticancer medicinal compounds chlorambucil with two nanocarriers (carbon nanotubes and boron nitride nanotubes) was investigated in a range of temperatures and different solvent environments. Checking the thermodynamic parameters through molecular mechanics calculations, the hardness, polarity, Gibbs free energy parameters, as well as the HOMO and LUMO gap of the compounds were calculated. Also, using molecular mechanics calculations, optimal force fields and lowest energy states were determined in each solvent. The findings of this research are promising for the development of targeted drug delivery systems and the preservation of these vital medicinal compounds.
[1] R. Vardanyan, V. Hruby, Chapter 28 - Antineoplastic Agents, in Synthesis of Best-Seller Drugs, Vardanyan, R. and Hruby, V., Editors., Academic Press: Boston,( 2016) 495-547.
[2] R. Vardanyan, V. Hruby, Chapter 34 - Antiviral Drugs, in Synthesis of Best-Seller Drugs, Vardanyan, R. and Hruby, V., Editors., Academic Press: Boston, (2016) 687-736.
[3] A. Emadi, R. J. Jones, R. A. Brodsky, Cyclophosphamide and cancer: golden anniversary, Nature reviews Clinical oncology, 6 (2009) 638-647.
[4] A. Paci, A. Rieutord, F. Brion, P. Prognon, Separation methods for alkylating antineoplastic compounds. Journal of Chromatography B: Biomedical Sciences and Applications, 764 (2001) 255-287.
[5] M. C. Janelsins, C. E. Heckler, B. D. Thompson, R. A. Gross, L. A. Opanashuk, D. A. Cory-Slechta, A clinically relevant dose of cyclophosphamide chemotherapy impairs memory performance on the delayed spatial alternation task that is sustained over time as mice age. Neurotoxicology, 56 (2016) 287-293.
[6] F. R. Mauro, A. M. Carella, S. Molica, F. Paoloni, A. M. Liberati, F. Zaja, V. Belsito, A. Cortellezzi, R. Rizzi, P. Tosi, cyclophosphamide and lenalidomide in patients with relapsed/refractory chronic lymphocytic leukemia. A multicenter phase I–II GIMEMA trial, Leukemia & Lymphoma, 58 (2017) 1640-1647.
[7] R. Guo, Q. Liu, W. Wang, R. Tayebee, F. Mollania, Boron nitride nanostructures as effective adsorbents for melphalan anti-ovarian cancer drug. Preliminary MTT assay and in vitro cellular toxicity, Journal of Molecular Liquids, 325 (2021) 114798.
[8] Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angewandte Chemie International Edition, 48 (2009) 7668-7672.
[9] M. Chegeni, Z. S. Rozbahani, M. Ghasemian, M. Mehri, Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery, International journal of biological macromolecules, 156 (2020) 504-513.
[10] A. Sabahi, R. Salahandish, A. Ghaffarinejad, E. Omidinia, Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer, Talanta, 209 (2020) 120595.
[11] N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Fully collapsed carbon nanotubes, Nature, 377 (1995) 135-138.
[12] A. Zinlynezhad, D. Nori-Shargh, N. Najma, H. Yahyaei, Configurational Properties of N, N′-Dimethyl-1, 3-Diazacyclohexane and Its Analogues Containing P and As Atoms: A Hybrid-DFT Study and NBO Interpretation, Phosphorus, Sulfur and Silicon, 186 (2010) 44-57.
[13] H. Xu, Q. Wang, G. Fan, X. Chu, Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs, Theoretical Chemistry Accounts, 137 (2018) 1-15.
[14] A. Merlo, V. Mokkapati, S. Pandit, I. Mijakovic, Boron nitride nanomaterials: biocompatibility and bio-applications, Biomaterials science, 6 (2018) 2298-2311.
[15] Z. Gao, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Noncovalent functionalization of boron nitride nanotubes in aqueous media opens application roads in nanobiomedicine. Nanobiomedicine, 1 (2014) 7 .
[16] A. R. Juárez, E. C. Anota, H. H. Cocoletzi, J. S. Ramírez, M. Castro, Fullerenes, Stability and electronic properties of armchair boron nitride/carbon nanotubes, Nanotubes and Carbon Nanostructures, 25 (2017) 716-725.
[17] E. Duverger, J. Bentin, E. Delabrousse, T. Gharbi, F. Picaud, Ab initio study of azomethine derivative cancer drug on boron nitride and graphene nanoflakes, J Nanotechnol Nanomed Nanobiotechnol, 4 (2017) 1-6.
[18] K. Shayan, A. Nowroozi, Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Applied Surface Science, 428 (2018) 500-513.
[19] M. Yoosefian, S. Sabaei, N. Etminan, Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Computers in Biology and Medicine, 114 (2019) 103433.
[20] F. Azarakhshi, M. Sheikhi, S. Shahab, M. Khaleghian, K. Sirotsina, H. Yurlevich, D. Novik, Investigation of encapsulation of Talzenna drug into carbon and boron-nitride nanotubes [CNT (8, 8-7) and BNNT (8, 8-7)]: a DFT study. Chemical Papers, 75 (2021) 1521-1533.
[21] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, See also, (2009).
[22] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B: Condensed Matter, 37 (1988) 785.
[23] B. Johnson, J. Seminario, P. Politzer, Modern Density Function Theory: A Tool for Chemistry. 1995, Elsevier, Amsterdam.
[24] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chemical reviews, 105 (2005) 2999-3094.
[25] S. Shahab, M. Sheikhi, L. Filippovich, E. Dikusar, H. Yahyaei, R. Kumar, M. Khaleghian, Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E, E)-azomethines in colored stretched poly (vinyl alcohol) matrix, Journal of Molecular Structure, 1157 (2018) 536-550.
[26] H. Yahyaei, S. Sharifi, S. Shahab, M. Sheikhi, M. Ahmadianarog, Theoretical study of adsorption of solriamfetol drug on surface of the B12N12 fullerene: a DFT/TD-DFT approach. Letters in Organic Chemistry, 18 (2021) 115-127.
[27] S. Shahab, M. Sheikhi, L. Filippovich, R. Kumar, E. Dikusar, H. Yahyaei, M. Khaleghian, Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes, Journal of Molecular Structure, 1148 (2017) 134-149.
[28] W. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117 (1995) 5179-5197.
[29] W. L. Jorgensen, J. Tirado-Rives, "The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110 (1988) 1657-1666.
[30] A. D. MacKerell Jr, D. Bashford, M. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, All-atom empirical potential for molecular modeling and dynamics studies of proteins, Journal of physical chemistry B, 102 (1998) 3586-3616.
[31] E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems, The Journal of chemical physics, 105 (1996) 1902-1921.
[32] R. HyperChem, 7.0 for windows, Hypercube. 2002, Inc.
[33] M. Kastner, Monte Carlo methods in statistical physics: Mathematical foundations and strategies. Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 1589-1602.
[34] I. Collins, P. Workman, New approaches to molecular cancer therapeutics, Nature chemical biology, 2 (2006) 689-700.
[35] N. Scheinfeld, Diseases associated with hidranitis suppurativa: part 2 of a series on hidradenitis, Dermatology online journal, 12 (2006).
[36] M. R. Sawaya, J. Kraut, Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence, Biochemistry, 36 (1997) 586-603.
[37] B. N. Cronstein, Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis, Pharmacological reviews, 57 (2005) 163-172.
[38] L. M. Meyer, F. R. Miller, M. J. Rowen, G. Bock, J. Rutzky, "Treatment of acute leukemia with amethopterin (4-amino, 10-methyl pteroyl , Acta haematologica ,3 (1950) 157-167.
[39] N. M. O'boyle, A. L. Tenderholt, K. M. Langner, Cclib: a library for package‐independent computational chemistry algorithms. Journal of computational chemistry, 29 (2008) 839-845.
[40] N. O’Boyle, GaussSum, Version 2.0. 5, . 2007.
[41] D. Anderson, D. B. McGregor, I. F. H. Purchase, M. C. E. Hodge, J. A. Cuthbert, Dominant-lethal test results with known mutagens in two laboratories, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 43 (1977) 231-246.
[42] J. C. Reepmeyer, Analysis of the nitrogen mustard mechlorethamine in topical pharmaceutical preparations by high-performance liquid chromatography, Journal of Chromatography A, 1085 (2005) 262-269.