شناسایی جدایه های Pseudomonas syringae pv syringae جدا شده از درختان میوه هسته دار با استفاده از انگشت نگاری ژنتیکی با توالی REP
محورهای موضوعی : گیاه پزشکیساغر کتابچی 1 * , نادر حسن زاده 2
1 -
2 -
کلید واژه: rep-PCR, rep-PRC, Pseudomonas syringae, درختان میوه هسته دار, stone fruits trees,
چکیده مقاله :
در این تحقیق نقوش ژنومی rep-PCR مربوط به 24 جدایه P. syringae pv. syringae که از نواحی مختلف ایران و از روی میزبان های مختلف جداسازی شده بودند در مقایسه با استرین استاندارد از کشور یونان مورد ارزیابی قرار گرفتند. DNA باکتری های مورد مطالعه به سه روش فریز- جوشاندن، استفاده از کلنی های خالص و از طریق شستشوی برگ حاوی باکتری تهیه شد. نتایج بدست آمده نشان داد در روش فوق نیاز به استخراج DNA نیست. به علاوه بررسی انگشت نگاری REP نشان داد خصوصیات میزبان و محل زندگی آنها بر روی ژنوم باکتری تاثیر متقابل دارند. به طوری که جدایه هایی که از درختان میوه هسته دار جدا شده بودند مجموعه ای بزرگ و مستقل از جدایه های گندم و نیشکر را تشکیل می دادند. همچنین جدایه های درختان میوه هسته دار که مربوط به یک منطقه جغرافیائی بودند از شباهت های بیشتری بر خوردار بودند. استفاده از توالی REP در روش rep-PCR به عنوان یک روش ساده، دقیق و سریع در جهت شناسائی و طبقه بندی ایزولههای پاتوارهای P. syringae مورد مطالعه و تائید قرار گرفت.
Repetitive PCR fingerprinting of 24 strains of P. syringae pv. syringae isolated from different host/areas were compared with a standard strain of Pss from Greece (BPIC 242). Bacterial DNA was prepared with three known methods i.e. freeze-boil, whole colony boiling and directly from washed leaf surface. Initial result showed no purified genomic DNA extraction was necessary for rep-PCR analysis. On the other hand, Rep patherns of Pss showed some correlation between host specialization and its habitant with genomic diversity. Strains isolated from stone fruits formed a distinct cluster from wheat and sugar beet strains and a similar pathern was found among all stone fruits strains in confined geographical areas. Therefore it was found the rep-PCR technique as a rapid, simple and producible method to identify and classify these important plant pathogens.
Bradbury, J. F. 1986. Pseudomonas syringae pv syringae, p.175-177. In: Guide to Plant Pathogenic Bacteria. CAB International Mycological Institute, Kew, England.
Bendict, A. A., Alvarez. M., & Pollar. L. W. 1990. Pathovar specific antigens of Xanthomonas caperstris pv. begoniae and Xanthomonas campestris pv. pelergonii detected with monoclonal antibodies. Applied and Environmental Microbiology, 56: 572-574.
Berthier, Y., Verdier, V., Guesdon, J., Chevrier, D., Denis, J., Decoux, G. & Lemattree, M. 1993. Characterization of Xanthomonas campestris pathovars by RNA gene restriction patterns. Applied and Environmental Microbiology, 59: 851-859.
Cheng, G. Y., Legard, D. E., Hanter, J. E. & Barr, T. J. 1989. Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot snap bean. Plant Disease, 73: 419-423.
Clerc, A., Mancaeu, C., Nesme, X. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Applied and Environmental Microbiology, 64: 1180-1187.
De Bruijin, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacteria repetitive intergenic consensus) sequences and the polimeras chain reaction to finger print the genoms of Rhizobium melloti isolates and other soil bacteria. Applied and Environmental Microbiology, 58: 2180-2187.
Denny, T. P., Gilmour, M. N., & Selander, R. K. 1988. Genetic diversity and relation ships of two pathovars of Pseudomonas syringae. Journal of Genetic Microbiology, 134: 1949-1960.
Dye, D. W., Bradbury, F., Goto, M., Hayward, A. C., Lelliot, R. A. & Schroth, M. N. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology, 59: 153-168.
Gilbertson, R. L., Maxwell, D. P., Hagedorn, D. J., & Leong, S. A. 1989. Development and application of plasmid DNA probe for detection of bacteria causing common bacterial blight of bean. Phytopathology, 79: 518-525.
Gross, B. C., Cody, Y. S., Proebsting, E. L., Radamaker, Jr. G. K. & Spots, R. A. 1984. Ecotypes and pathogenicity of Ice nucleation active Pseudomonas syringae isolated from deciduous fruit tree orchards. Phytopathology, 74: 241-284.
Hildebrand, D. C., Schroth, M. N. & Huisman, O. C. 1982. The DNA homology matrix and non-random variation concepts as the basis for the taxonomic treatment of plant pathogenic and other bacteria. Annual Review of Phytopathology, 20: 235-256.
Legard, D. E., Aquardo, C. F. & Hunter, J. E. 1993. DNA sequence variation and phoglogenic relationships among strains of Pseudomonas syrgingae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism. Applied and Environmental Microbiology, 59: 4180-4188.
Little, E. L., Bostock, R. M. & Kirkpatrick, B. C. 1998. Genetic characterization of Pseudomonas syringae pv. syringae strain from stone fruits in California. Applied and Environmental Microbiology, 64: 3818-3823.
Louws, F. J., Fulbright, D. W., Stephens, C. T. & De Bruiin, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 80: 2286-2292.
Palleroni, N. J. 1984. Genus Pseudomonas migula. 1894, pp. 141-198. In:Holt, J. G. & Kreig, N.R. (Eds.) Bergey's Manual of Systematic Bacteriology, Vol. 1. The Williams & Wilkins Co., Baltimore, USA.
Roos, I. M. M. & Hahingh, M. J. 1987. Pathogenicity and numerical analysis of phenotypic features of Pseudomonas syringae strains isolated from deciduous fruit trees. Phytopathology, 77: 900-908.
Schadd, N. W., Jones, J. B. & Chun, W. (Eds.). 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd edition, American Phytopathology Society Press, St. Paul. MN. USA.
Scholz, B. K., Jakobek, J. L. & Lindgren, P. B. 1994. Restriction fragment length, polymorphism evidence of genetic homology within a pathover of Pseudomonas syringae. Applied and Environmental Microbiology, 60: 1093-1100.
Sokal, R. R. & Sneath, P. H. A. 1963. Principles of numerical taxonomy, pp. 169-210. W.H. freeman and Co., San fransisco. California, USA.
Stead, D. E. 1992. Grouping of plant-pathogenic and other Pseudomonas species by using cellular fatty acid profiles. International Journal of Systematic of Bacteriology, 42: 281-295.
Vanzyl, E. & Steyn, P. L. 1990. Differentiation of phytopathogenic Pseudomonas and Xanthomons species and pathovars by numerical taxonomy and protein gel electrophoresis. Systematic and Applied Microbiology, 13: 60-71.
Vauterin, L., Swings, J. & Kersters, K. 1991. Grouping of Xanthomonas campestris pathovars by SDS PAGE of proteins. Journal of Genetic Microbiology, 137: 1677-1687.
Vauterin, L., Vantomme, R., Pot, B., Hoste, B., Swings, J., & Kertser, K. 1990. Taxonomic analysis Xanthomonas campestris pv. begoniae and Xanthomonas campestris pv. Pelargonii by means of phytopathological phenotyphic protein electrophoretic and DNA hybridization methods. Systematic and Applied Microbiology, 13: 166-176.
Versalovic, J., Koeuth, T., & Lupski, J. R. 1991. Distribution of repetitive DNA sequences in Eubacteria and application fingerprinting bacterial genomes. Nucleic Acids Research, 19: 6823-6831.
Young, J. M. 1991. Pathogenicity and identification of the lilac pathogen, Pseudomonas syringae pv syringae Van Hall 1902. Annual Applied Biology, 118: 283-298.
Young, J. M., Takikawa, Y., Gardan, L. & Stead, D. E. 1992. Changing concepts in the taxonomy of plant pathogenic bacteria. Annual Review of Phytopathology, 30: 67-105.