طراحی مدل برنامهریزی استوار یکپارچه تولید انرژی چند وجهی و تعمیرات تجهیزات در نیروگاه تلمبه ذخیرهای در راستای سیاستگذاریهای سبز
محورهای موضوعی : اقتصاد و توسعه پایدارفرید عسگری 1 , فریبرز جولای 2 , فرزاد موحدی سبحانی 3
1 - دانشجوی دکتری گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استاد گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
3 - استادیار گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: برنامهریزی تولید, نگهداری و تعمیرات, نیروگاه تلمبه ذخیرهای, الگوریتم فرا ابتکاری GA و ICA.,
چکیده مقاله :
تولید انرژی در بخش نیروگاههای تلمبهای، استراتژی ذخیره و بهرهبرداری دائم از این نیروگاهها یکی از سیاستهای موفق دولتها است. از این رو در این پژوهش حداقلسازی میزان هزینههای تولید انرژی و نگهداری و تعمیرات در یکی از نیروگاههای بزرگ تلمبه ذخیرهای در ایران در راستای سیاستگذاریهای سبز بر اساس راهبرد شبیهسازی- بهینهسازی پرداخته شده است. در مدل MINLP معرفی شده بدنبال بهینهسازی هزینه نگهداری و تعمیرات بر اساس میزان تولید، ساعت کارکرد نیروگاه، سطح کسری تولید انرژی با در نظر گرفتن عدم قطعیت در سطح تقاضای شبکه با استفاده از روش برنامهریزی امکانی ارائه شده است. جهت حل مدل ریاضی در ابعاد کوچک از الگوریتم حل دقیق CPLEX در نرم افزار GAMS حل شده است و در ابعاد بزرگ از دو الگوریتم فرا ابتکاری GA و ICA با کدنویسی دودویی در نرمافزار متلب بهرهگیری شد. نتایج این پژوهش نشان داده است که حل الگوریتم فرا ابتکاری با وجود تقریب جوابهای بهینه با ضریب اطمینان 95 درصد در مدت زمان مناسبی اجرا شده است و نتایج پژوهش به کاربردی بودن مدل ارائه شده در نیروگاه مورد مطالعه اشاره دارد.
Energy production in pumped power plants, reserve strategy, and continuous exploitation of these power plants are some of the successful policies of governments. Therefore, in this research, the minimization of the cost of energy production and maintenance and repairs in one of the large storage pump power plants in Iran in line with green policies has been discussed based on the simulation-optimization strategy. In the introduced MINLP model, optimization of the cost of maintenance and repairs based on the amount of production, operating hours of the power plant, and the deficit level of energy production, taking into account the uncertainty in the demand level of the network, is presented using the feasibility planning method. To solve the mathematical model in small dimensions, the CPLEX exact solution algorithm was solved in GAMS software, and in large sizes, two meta-heuristic algorithms GA and ICA were used with binary coding in MATLAB software. The results of this research have shown that the solution of the meta-heuristic algorithm has been implemented in a suitable period despite the approximation of optimal solutions with a confidence factor of 95%, and the results of the research indicate the applicability of the presented model in the studied power plant.
Aguirre, A. M., & Papageorgiou, L. G. (2018). Medium-term optimization-based approach for the integration of production planning, scheduling and maintenance. Computers & Chemical Engineering, 116, 191-211.
Akkaş, Ö. P., & Çam, E. (2019). Optimal Operation of Virtual Power Plant in a Day Ahead Market In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-4.
Badam Firouz, J., & Shariat Modari, A. (2019). Green energy management and solutions The 14th National Conference on Quality and Productivity, Iran. 297-306. https://nqpc.ir/article-1-280-fa.pdf [In Persian]
Berthaut, F., Gharbi, A., & Dhouib, K. (2011). Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell. Omega, 39(6), 642-654.
Boudjelida, A. (2019). On the robustness of joint production and maintenance scheduling in presence of uncertainties. Journal of Intelligent Manufacturing, 30(4), 1515-1530.
Elgamal, A. H., Kocher-Oberlehner, G., Robu, V., & Andoni, M. (2019). Optimization of a multiple-scale renewable energy-based virtual power plant in the UK. Applied energy, 256, 113973.
Glawar, R., Karner, M., Nemeth, T., Matyas, K., & Sihn, W. (2018). An approach for the integration of anticipative maintenance strategies within a production planning and control model. Procedia CIRP, 67, 46-51.
Hadayeghparast, S., Farsangi, A. S., & Shayanfar, H. (2019). Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant. Energy, 172, 630-646.
Hamrol, A. (2018). A new look at some aspects of maintenance and improvement of production processes. Management and Production Engineering Review, 9.
Kang, K., & Subramaniam, V. (2018). Joint control of dynamic maintenance and production in a failure-prone manufacturing system subjected to deterioration. Computers & Industrial Engineering, 119, 309-320.
Khodaparast, M., & Ghezelbash, A. (2016). Applied Economic Studies of Iran. 5(17), 217-242. https://profdoc.um.ac.ir/paper-abstract-1057310.html [In Persian]
Liu, Q., Dong, M., & Chen, F. F. (2018). Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robotics and Computer-Integrated Manufacturing, 51, 238-247.
Martínez-Lucas, G., Pérez-Díaz, J. I., Chazarra, M., Sarasúa, J. I., Cavazzini, G., Pavesi, G., & Ardizzon, G. (2019). Risk of penstock fatigue in pumped-storage power plants operating with variable speed in pumping mode. Renewable Energy, 133, 636-646.
Mennemann, J. F., Marko, L., Schmidt, J., Kemmetmüller, W., & Kugi, A. (2019). Nonlinear Model Predictive Control of a Variable-Speed Pumped-Storage Power Plant. IEEE Transactions on Control Systems Technology.
Özyön, S. (2020). Optimal short-term operation of pumped-storage power plants with differential evolution algorithm. Energy, 194, 116866.
Sana, S. S. (2012). Preventive maintenance and optimal buffer inventory for products sold with warranty in an imperfect production system. International Journal of Production Research, 50(23), 6763-6774.
Schreiber, M., Klöber-Koch, J., Richter, C., & Reinhart, G. (2018). Integrated Production and Maintenance Planning for Cyber-physical Production Systems. Procedia CIRP, 72, 934-939.
Shafiee, M., Ghazi, R., & Moeini-Aghtaie, M. (2019). Day-ahead Resource Scheduling in Distribution Networks with Presence of Electric Vehicles and Distributed Generation Units. Electric Power Components and Systems, 1-14.
Sheikhalishahi, M., Eskandari, N., Mashayekhi, A., & Azadeh, A. (2019). Multi-objective open shop scheduling by considering human error and preventive maintenance. Applied Mathematical Modelling, 67, 573-587.
Tan, D., Chen, W., & Wang, H. (2017). On the Use of Monte-Carlo Simulation and Deep Fourier Neural Network in Lane Departure Warning. in IEEE Intelligent Transportation Systems Magazine, 9(4), 76-90. https://doi.org/10.1109/MITS.2017.2743204
Vasconcelos, M. H., Beires, P., Moreira, C. L., & Lopes, J. A. P. (2019). Dynamic security of islanded power systems with pumped storage power plants for high renewable integration–A study case. The Journal of Engineering, 18, 4955-4960.
Wu, Y., Zhang, T., Xu, C., Zhang, B., Li, L., Ke, Y., & Xu, R. (2019). Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: A two-stage framework. Energy Conversion and Management, 199, 112066.
Xiao, S., Chen, Z., & Sarker, B. R. (2019). Integrated maintenance and production decision for k-out-of-n system equipment with attenuation of product quality. International Journal of Quality & Reliability Management, 36(5), 735-751.
Yao, W., Deng, C., Li, D., Chen, M., Peng, P., & Zhang, H. (2019). Optimal Sizing of Seawater Pumped Storage Plant with Variable-Speed Units Considering Offshore Wind Power Accommodation. Sustainability, 11(7), 1939.
Yin, S., Ai, Q., Li, Z., Zhang, Y., & Lu, T. (2020). Energy management for aggregate prosumers in a virtual power plant: A robust Stackelberg game approach. International Journal of Electrical Power & Energy Systems, 117, 105605.