بررسی رفتار خوردگی و تریبولوژی در پوشش اکسیدی پلاسمای الکترولیتی اعمالی بر سطح استکان تایپیت آلومینیومی
محورهای موضوعی : خوردگی و حفاظت موادسعید صفری 1 , اسمعیل احمدی 2 , حسین صفری 3
1 - کارشناسی ارشد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران. (اداره مهندسی مونتاژ موتور، شرکت ایران خودرو)
2 - کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران. (اداره مهندسی مونتاژ موتور، شرکت ایران خودرو)
3 - کارشناسی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران غرب، تهران، ایران.
کلید واژه: ", اکسیداسیون پلاسمای الکترولیتی ", , ", آلیاژ آلومینیوم", , ", استکان تایپیت", , ", مقاومت به خوردگی", , ", مقاومت به سایش", ,
چکیده مقاله :
اخیرا استفاده از آلیاژهای غیرآهنی در صنعت خودروسازی به جهت خواص مطلوب به میزان چشمگیری افزایش پیدا کرده است اما با توجه به شرایط کاری در موتور خودرو اعمال پوشش به منظور محافظت از سطوح و افزایش طول عمر قطعه الزامی می باشد. در این پژوهش، ابتدا پوشش اکسیداسیون پلاسمای الکترولیتی بر روی سطح استکان تایپیت آلومینیومی که همواره با بادامک های میل سوپاپ در تماس است، اعمال می شود و در ادامه خواص متالورژیکی پوشش ایجاد شده بر روی زیرلایه در الکترولیتهای سیلیکاتی و آلومیناتی مورد بررسی و مقایسه قرار میگیرد. نتایج حاصل از مطالعات فازی نشان می دهد که حین فرایند پوشش دهی فازهایی نظیر α-Al2O3 و γ-Al2O3 بر روی سطح ایجاد می شود به علاوه پوشش اکسیدی نهایی به دلیل برخورداری از خواص و کیفیت مطلوب، مقاومت در برابر خوردگی و سایش را به شکل قابل توجهی بهبود می بخشد به نحوی که سرعت خوردگی پوشش ایجاد شده در الکترولیت سیلیکاتی و آلومیناتی به ترتیب 19 و 22 برابر و نرخ سایش نیز به ترتیب 6 و 9 برابر نسبت به نمونه فاقد پوشش کاهش می یابد. در انتها بررسی های میکروسکوپی نیز نشان می دهد که قطر متوسط تخلخل ها در پوشش PEO ایجاد شده در الکترولیت سیلیکاتی نسبت به پوشش آلومیناتی بزرگتر است.
Recently, the consumption of non-ferrous alloys has increased significantly in the automotive industry due to their desirable properties, but according to the working conditions of car engine, it is necessary to apply coating to protect the surfaces and extend the lifetime of the car engine compartments. In this study, firstly, electrolytic plasma oxidation (PEO) is coated on the surface of the aluminium hydraulic tappet which is always in contact with the camshaft lobes, and then the metallurgical properties of the coating formed on the substrate in silicate and aluminate electrolytes are investigated. The results of the phase studies indicate that during the coating process, phases such as α-Al2O3 and γ-Al2O3 are created on the surface, moreover the plasma electrolytic oxidation coating resists against corrosion and wear strongly because of its favourable properties and quality. Compared to an uncoated sample, the corrosion rate and wear rate of coatings created in silicate and aluminate electrolytes decrease by 19 and 22 times, respectively, and by 6 and 9 times, respectively. Finally, the microscopic analysis reveals that the average diameter of the porosities in PEO coating formed in the silicate electrolyte is larger than that of coating generated aluminate electrolyte.
[1] H. Yamagata, "The Science and Technology of Materials in Automotive Engines", Woodhead Publishing, 2005.
[2] J. Wang, X. Pang & H. Jahed. "Surface protection of Mg alloys in automotive applications: A review", AIMS Materials Science, vol. 6, pp. 567-600, 2019.
[3] م. ضرغامی و ح. ر. سراجی، "توسعه کاربرد کامپوزیتها و آلیاژهاي غیر آهنی در قطعات خودرو بهمنظور سبکسازی و کاهش مصرف سوخت"، پنجمین همایش سالانه بینالمللی صنعت خودرو ایران، 1395.
[4] J. Tan & S. Ramakrishna, "Applications of magnesium and its alloys: A review", Applied Sciences, vol. 11, pp. 61-68, 2021.
[5] H. Dong, "Surface Engineering of Light Alloys Aluminium, Magnesium and Titanium Alloys", Woodhead Publishing, 2010.
[6] E. Syuichi, M. Masuda, H. Fujita, S. Hayashi, Y. Terashima & K. Motosugi, "Aluminum valve lifter for Toyota new V-8 engine", no. 900450. SAE Technical Paper, 1990.
[7] L. S. Woo. "Composite hybrid valve lifter for automotive engines", Composite structures, vol. 71, pp. 26-33, 2005.
[8] D. Kosuke & H. Kurita, "Development of lightweight DLC coated valve lifter made from beta titanium alloy for motorcycles", SAE International Journal of Materials and Manufacturing, vol. 6, no. 1 pp.105-112, 2013.
[9] آ، موسوی و و، مقدم نیا، "علل سایش قطعه استکان تایپت چدنی و روش¬هاي بهبود خواص"، هفتمين همايش بینالمللی موتورهاي درونسوز، 1390.
[10] R. O. Hussein, X. Nie & D. O. Northwood, "An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing", Electrochimica Acta, vol. 112, pp. 111-119, 2013.
[11] Gh. Barati, M. Aliofkhazraei, P. Hamghalam & N. Valizade, "Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications", Journal of Magnesium and Alloys, vol. 5, pp. 74-132, 2017.
[12] M. Kaseem, S, Fatimah, N, Nashrah & Y, Gun Ko, "Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance", Progress in Materials Science, vol.117, 2021.
[13] A. L. Yerokhin & X. Nie, "Plasma electrolysis for surface engineering", Surface and Coatings Technology, vol. 122, pp.73-93, 1999.
[14] F. Simchen, S. Maximilian, A. Kopp & T. Lampke, "Introduction to plasma electrolytic oxidation—An overview of the process and applications", Coatings, vol. 10, pp. 628-646, 2020.
[15] P. Gupta, G. Tenhundfeld, E. O. Daigle & D. Ryabkov, "Electrolytic plasma technology: Science and engineering - An overview", Surface and Coatings Technology, vol. 201, pp. 8746-8760, 2007.
[16] A. Polat & M. Makaraci, "Influence of sodium silicate concentration on structural and tribological properties of micro arc oxidation coatings on 2017A aluminum alloy substrate", Journal of Alloys and Compounds, vol. 504, pp. 519–526, 2010.
[17] K. Wang & B. H. Koo, "Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation", Transactions of Nonferrous Metals Society of China, vol.19, pp. 866-870, 2009.
[18] A. Němcová, B. Pacal & P. Skeldon, "Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy", Surface & Coatings Technology, vol. 232, pp. 827-838, 2013.
[19] J. J. Zhuang, N. Xiang & R. G. Song, "Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy", Surface Engineering, vol. 33, pp. 744-752, 2016.
[20] S. Xin, R. Zhao & L. Song, "Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminium alloy prepared by micro-arc oxidation process", Thin Solid Films, vol. 515, pp. 326-332, 2006.
[21] X. Zhanga & Y. Zhanga, "Effects of frequency on growth process of plasma electrolytic oxidation coating" Materials Chemistry and Physics, vol. 132, pp. 909– 915, 2012.
[22] S. Aliasghari, P. Skeldon & G. E. Thompson, "Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings", Applied Surface Science, vol. 316, pp. 436-476, 2014.
[23] S. Onoa, S. Moronukia & Y. Morib, "Effect of electrolyte concentration on the structure and corrosion resistance of anodic Films formed on Magnesium through plasma electrolytic oxidation", Electrochimica Acta, vol. 240, pp. 415-423, 2017.
[24] W. C. Gu, G. H. Lv, H. Chen & G. L. Chen, "Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminium alloy", Materials Science and Engineering, vol. 447, pp. 158–162, 2007.
[25] A. G. Rakoch, A. A. Gladkova & V. L. Kovalev, "The Mechanism of Formation of Composite Microarc Coatings on Aluminium Alloys", Protection of Metals and Physical Chemistry of Surfaces, vol. 49, pp. 880-884, 2013.
[26] L. Wanying, Y. Pu, H. Liao, Y. Lin & W. He, "Corrosion and wear behaviour of PEO coatings on D16T aluminium alloy with different concentrations of graphene", Coatings, vol. 10, no. 3, pp.230-249 2020.
[27] M. Nadimi, C. Dehghanian & A. Etemad moghadam, "Influence of SiO2 nanoparticles incorporating into ceramic coatings generated by PEO on Aluminium alloy: Morphology, adhesion, corrosion, and wear resistance", Materials Today Communications, vol. 31, 2022.
[28] W. Liu, P. Yi Pu, L. Hongcheng & Y. Lin, "Corrosion and wear behaviour of PEO coatings on D16T aluminium alloy with different concentrations of graphene", Coatings, vol. 10, pp. 249-259, 2020.
[29] L. Guohua, W. Gu, H. Chen, W. Feng & M. Latif Khosa, "Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte", Applied Surface Science, vol. 253, pp. 2947-2952, 2006.
[30] S. Aliasghari, M. Ghorbani, P. Skeldon & H. Karami, "Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding" Surface and Coatings Technology, vol. 313, pp. 274-281, 2017.
[31] K. Wang, B. H. Koo & L. Chan-Gyu "Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation", Transactions of Nonferrous Metals Society of China, vol. 19, pp. 866-870, 2009.
[32] A. Polat, M. Makaraci & M. Usta, "Influence of sodium silicate concentration on structural and tribological properties of micro arc oxidation coatings on 2017A aluminum alloy substrate", Journal of Alloys and Compounds, vol. 504, pp. 519–526, 2010.
[33] A. Toulabifard, M. Rahmati, K. Raeissi, A. Hakimizad & M. Santamaria. "The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy", Coatings, vol. 10, pp. 937-946, 2020.
[34] P. V. Ivashin, A. V. Polunin, M. M. Krishtal, A. Tverdokhlebov & E. D. Borgardt, "The influence of SiO2 nanoparticles addition into electrolyte on the thermal conductivity of oxide layer formed on eutectic aluminium-silicon alloy by PEO", Journal of Physics: Conference Series, vol. 112, IOP Publishing, 2018.
[35] ص. اسماعیلی، ت. احمدی، ح. بخششی و ع. نوربخش، "تأثیر افزودن اکسید گرافن بر رفتار خواص تریبولوژی پوشش¬های ایجاد شده روی آلیاژ منیزیم AZ31 به روش اکسیداسیون الکترولیتی پلاسما"، فرآیندهای نوین در مهندسی مواد، سال شانزدهم، شماره سوم، صفحه 29-39، 1401.
[36] Ch. Yang, Z. Jiayu, C. Suihan, P. Chen, W. Zhongcan, M. Zhengyong, K. F. Ricky, T. Xiubo, K. C. Paul & W. Zhongzhen, "Wear and corrosion resistant coatings prepared on LY12 aluminum alloy by plasma electrolytic oxidation", Surface and Coatings Technology, vol. 409, pp. 885-893, 2021.
[37] M. Treviño, N. F. Garza-Montes, A. Pérez, M. A. L. Hernández-Rodríguez, A. Juárez, & R. Colás, "Wear of an aluminium alloy coated by plasma electrolytic oxidation", Surface and Coatings Technology, vol. 206, pp. 2213-2219, 2012.
[38] R. Vignesh, R. Vaira & R. Padmanaban, "Influence of friction stir processing parameters on the wear resistance of aluminium alloy AA5083", Materials Today, vol. 55, pp. 7437-7446, 2018.
[39] U. Malayoglu, C. Kadir, U. Tekin, U. Malayoglu & S. Shrestha, "An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy", Materials science and Engineering, vol. 528, no. 24, pp.7451-7460, 2011.
[40] N. Xiang, R. G. Song, H. Li, C. Wang, Q. Z. Mao & Y. Xiong, "Study on microstructure and electrochemical corrosion behaviour of PEO coatings formed on aluminium alloy", Journal of Materials Engineering and Performance, vol. 24, pp. 5022-5031, 2015.