اتصال نانو کامپوزیت Al-Al3V با استفاده از فرایند اتصال فاز مایع گذرا و ارزیابی خواص آن
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدسیده زهرا انوری 1 * , مهدی رجبی 2 , صفورا عشاقی 3
1 - گروه مهندسی مکانیک، دانشگاه پیام نور، صندوق پستی 19395-3697، تهران، ایران
2 - فارغ التحصیل کارشناسی ارشد مهندسی مواد(جوشکاری)، موسسه دانش پژوهان پیشرو، اصفهان
3 - عضو هیات علمی موسسه دانش پژوهان پیشرو، اصفهان
کلید واژه: نانو کامپوزیت, استحکام برشی, فرایند اتصال فاز مایع گذرا, کامپوزیت های زمینه آلومینیومی, لایه واسطه,
چکیده مقاله :
در این تحقیق اتصال نانو کامپوزیت زمینه آلومینیومی تقویت شده با ذرات آلومیناید وانادیوم با استفاده از فرآیند اتصال فاز مایع گذرا و ارزیابی خواص آن، مورد بررسی و ارزیابی قرار گرفت. همچنین اثر تغییرات دما و زمان اتصال بر خواص اتصال بررسی شد. برای این منظور ابتدا نانو کامپوزیت Al-Al3V جهت اتصال آماده سازی شد. از فلز مس به عنوان لایه واسطه، استفاده شد و اتصال این قطعات به روش فاز مایع گذرا، در دماهای 560، 580 و 600 درجه سانتی گراد و زمان های 20، 40 و 60 دقیقه مورد بررسی قرار گرفت. جهت ارزیابی ریز ساختار درز اتصال و اطراف آن از میکروسکوپ الکترونی روبشی استفاده شد. همچنین بررسی استحکام برشی اتصال ها توسط دستگاه تست فشار انجام شد. نتایج نشان داد در دمای 580 و 600 درجهسانتیگراد اتصال بهتری نسبت به بقیه نمونه ها ایجاد شده است. با افزایش دمای اتصال، حجم مذاب ایجاد شده در درز اتصال بیشتر شده و لذا سطح وسیع تری از درز اتصال توسط مذاب پر شد. با توجه به نمودارهای سختی سنجی بدست آمده بیشترین میزان سختی در درز اتصال و اطراف آن در دمای 600 درجهسانتیگراد در زمان 20 دقیقه است که دلیل آن نفوذ مس و ذرات رسوبی Al2Cu بیشتر در اطراف درز اتصال است. بیشترین استحکام برشی مقدار 65 مگاپاسکال برای اتصال ایجاد شده در دمای 600 درجهسانتیگراد در زمان 40 دقیقه به دست آمد.
In this research, the bonding of aluminum matrix nanocomposites reinforced by Al3V particles was investigated using a transient liquid phase of bonding process and evaluating its properties. The effect of temperature and time of bonding on the properties was also investigated. For this purpose, Al-Al3V nanocomposite components were first prepared for bonding. The copper metal was used as the intermediate layer and bonding of these components was investigated by the transient liquid phase method at 560, 580 and 600°C, and 20, 40 and 60 min. Scanning electron microscopy was used to evaluate the microstructure of the joint. The shear strength of the joints was also evaluated by a pressure test device. The results indicated better bonding at 580 and 600°C than other samples. With increasing bonding temperature, the melt volume increased at the bonding joint and thus a wider surface area is filled by melt. According to the microhardness results, the maximum hardness of the joint is at 600 ° C for 20 min due to the diffusion of copper and formation of Al2Cu precipitated particles around the joint seam. The maximum joint shear strength of 65 MPa was achieved at 600 ° C for 40 min.
1] Z. Yang, Y. Shen, X. Li & Q. Meng., "Transient liquid phase bonding between tungsten and stainless steel", Journal of Nonferrous Metals Society of China, vol. 22, pp. 2783-2789, 2012.
[2] R. Blondeau, Ed. "Metallurgy and mechanics of welding". John Wiley & Sons, 2013.
[3] C. R. Hammond, "The Elements, in Handbook of Chemistry and Physics" (81st ed.), 2004.
[4] M. Ghosh, K. Bhanumurthy, G. B. Kale, J. Krishnan & S. Chatterjee, "Diffusion bonding of titanium to 304 stainless steel", Journal of Nuclear Marerials, vol. 322, pp. 235-241, 2003.
[5] X. Y. Gu, D. Q. Sun, L. Liu & Z. Z. Duan, "Microstructure and mechanical properties of transient liquid phase bonded TiCP/AZ91D joints using copper interlayer", Journal of Alloys and Compounds, vol. 476, pp. 492–499, 2009.
[6] S. Kundu & S. Chatterjee, "Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer", Materials Characterization, vol. 59, pp. 631-637, 2008.
[7] D. Navaei, X. R. Wang, M. S. Tillack & S. Malang, "Elastic-plastic analysis of the steel-to-tungsten transition joint for a high performance divertor", Fusion Engineering and Design, vol. 88, pp. 361-367, 2013.
[8] Z. Zhong, H. Jung, T. Hinoki & A. Kohyama, "Effect of joining temperature on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer", Journal of Materials Processing Technology, vol. 210, pp. 1805-1810, 2010.
[9] M. Muratoglu, O. Yilmaz & M. Aksoy, "Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments", journal of materials processing technology, vol. 7, pp. 178-211, 2006.
[10] م. خاکیان قمی، م. سعید شهریاری و س. ناطق، "تأثیر زمان اتصال بر ریزساختار و تکمیل انجماد ایزوترم در خلال اتصال TLP سوپر آلیاژهای پایه نیکل غیرمشابه IN738LC و Nimonic 75"، فرآیندهای نوین در مهندسی مواد، سال 15، شماره 2، صفحه 13-25، 1400.
[11] م. رجبی و ر. بختیاری، "ساخت و مشخصه یابی نوار و پودر آلیاژ آمورف MBF-100 بکار رفته در اتصال TLP سوپرآلیاژ FSX-414"، فرآیندهای نوین در مهندسی مواد، سال 12، شماره 1، صفحه 59-72، 1397.
[12] S. S. Sayyedain, H. R. Salimijazi, M. R. Toroghinejad & F. Karimzadeh, "Microstructure and mechanical properties of transient liquid phase bonding of Al2O3 /Al nanocomposite using copper interlayer", Materials and Design, vol. 53, pp. 275–282, 2014.
[13] S. S. Sayyedain, M. R. Toroghinejad & F. Karimzadeh, "Joining of Al/Al2O3 nanocomposite by Transient Liquid Phase Diffusion Bonding", Conference Paper December, 2011.
[14] M. Yarahmadi, M. Shamanian, H. R. Salimijazi, "Study of Microstructure and Mechanical Properties of Transient Liquid Phase bonded of Al/Al2O3", Materials Science and Engineering, Vol. 1396, 2014.
[15] G. Zhang, J. Zhang, Y. Pei, S. Li & D. Chai, "Joining of Al2O3p/Al composites by transient liquid phase (TLP) bonding and a novel process of active-transient liquid phase (A-TLP) bonding", Materials Science and Engineering A, vol. 488, pp. 146–156, 2008.
[16] O. Grant & C. D. Cook, "Overview of Transient Liquid Phase and Partial Transient Liquid Phase bonding", Sorensen Springer Science, Vol. 245, pp. 25–34, 2011.
[17] م. عزیزی و ر. بختیاری، "اتصال فاز مایع گذرا (TLP) برای آلیاژ Al5083 با استفاده از لایه واسط مس"، دهمین همایش مشترک و پنجمین کنفرانس بینالمللی انجمن مهندسی مواد و متالورژی و انجمن علمی ریختهگری ایران، شیراز، دانشگاه شیراز، 1395.
[18] S. Z. Anvari, F. Karimzadeh & M. H. Enayati, "Synthesis and charactevisation of nanostructured Al-Al3V and Al-(Al3V-Al2O3) composites by powerd metallurgy", Materials science and Technology, vol. 34, no. 2, pp. 1-12, 2017.
[19] H. Nami, A. Halvaee, H. Adgi & A. Hadian, "Transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite", Materials and Design, vol. 32, pp. 3957–3965, 2011.
[20] A. A. Shirzadi & E. R. Wallach, "New approaches for transient liquid phase diffusion bonding of aluminium based metal–matrix composites", J Mater Sci Technol, vol. 13, pp. 135–42, 1997.
[21] K. Liu, Y. Li, C. Xia & J. Wang, "Microstructural evolution and properties of TLP diffusion bonding super-Ni/NiCr laminated composite to Ti-6Al-4V alloy with Cu interlayer", Materials and Design, vol. 135, pp. 184–196, 2017.
[22] M. Ghayoor & A. M. Hadian, "On the Role of Bonding Time on Microstructure and Mechanical Properties of TLP Bonded Al/Mg2Si Composite", J. Compos. Sci, vol.3, pp. 66, 2019.
[23] X. P. Zhang, Y. W. May, G. F. Quan & W. Way, "Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiCMMC)", Composites A, vol. 30, pp. 1415-1421, 1999.
_||_