ساخت و مشخصهیابی داربست هسته-پوسته کیتوسان/ پلیکاپرولاکتون حاوی فیبرین غنی از پلاکت با روش الکتروریسی هممحور برای کاربرد در پزشکی
محورهای موضوعی : بیوموادامیر عباس رستگار 1 , محبوبه محمودی 2 , محمد میرجلیلی 3 , نوید نصیر زاده 4
1 - دانشجو دکتری، دانشکده مهندسی نساجی وپلیمر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
2 - دانشیار، دانشکده مهندسی پزشکی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
3 - استاد، دانشکده مهندسی نساجی و پلیمر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
4 - دانشیار، دانشکده مهندسی نساجی و پلیمر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
کلید واژه: کیتوسان, مهندسی بافت استخوان, فیبرین غنی از پلاکت, الکتروریسی هم محور, داربست نانوالیاف,
چکیده مقاله :
فیبرین غنی از پلاکت (PRF) یک ماتریس فیبرینی طبیعی حاوی پلاکت وفاکتورهای رشد موجود در خون می باشد که ترمیم بافت های استخوانی را تسریع می بخشد. در این مطالعه، داربست پلیکاپرولاکتون/ کیتوسان (داربست A) وداربست هسته-پوسته پلیکاپرولاکتون/ کیتوسان حاوی PRF (داربست B) به ترتیب با روش الکتروریسی تک محور والکتروریسی هم محور ساخته شدند و مورد مشخصه یابی قرار گرفتند. مورفولوژی سطح واندازه قطر الیاف، میزان تخلخل، خواص مکانیکی و گروههای عاملی موجود بر روی سطح داربست ها به ترتیب با میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ الکترونی عبوری (TEM)، روش جابهجایی مایع، دستگاه سنجش استحکام و طیفسنجی IR (FTIR) ارزیابی گردید. اندازه میانگین قطر الیاف داربست B در مقایسه با داربست A از مقدار nm 179 به nm 160 کاهش یافت. همچنین، حضور کیتوسان حاوی PRF در هسته با تشکیل پیوند هیدروژنی با پلی کاپرولاکتون در پوسته در داربست B سبب ایجاد داربستی با خواص مکانیکی عالی و مدول الاستیک MPa 40 گردید. زیستسازگاری و چسبندگی سلولهای استخوانی بر روی سطح داربستها با روش MTT مورد بررسی قرار گرفت. به دلیل حضور PRF، رشد و چسبندگی سلولهای استخوانی بر روی سطح داربست B در مقایسه با داربست A افزایش یافت؛ بنابراین با توجه به نتایج به دست آمده از این تحقیق، داربست هسته-پوسته حاوی PRF می تواند پیشنهاد مناسبی جهت کاربرد در پزشکی باشد.
Platelet-rich fibrin (PRF) is a natural fibrin matrix containing platelets and growth factors in the blood that increases the bone tissue repair. In this study, polycaprolactone/chitosan (scaffold A) and polycaprolactone/chitosan core-shell scaffold containing PRF (scaffold B) were fabricated by uniaxial electrospinning and coaxial electrospinning methods, respectively and were characterized. Surface morphology, fiber diameter, porosity, mechanical properties, and functional groups on the scaffolds surface were evaluated by scanning electron microscope (SEM) and transition electron microscopy (TEM), displacement liquid method, tensile strength test, and fourier transform infrared (FTIR) spectroscopy, respectively. The average fibers diameter of the scaffold B decreased to 160 nm as compared to 179 nm for the scaffold A. Also, the presence of chitosan containing PRF in the core with the formation of hydrogen bonding with polycaprolactone in the shell of the scaffold B caused a scaffold with excellent mechanical properties and elastic modulus 40 MPa. Cell viability and adherence of bone cells on the surface scaffolds were evaluated via MTT assay. Due to the present of PRF in the scaffold B, the bone cells growth and cells adhesion on the surface of scaffold B increased compared to the scaffold A. Therefore, according to the results of this study, the core-shell scaffold containing PRF can be a good suggestion for use in biomedical applications.
[1] E. Venugopal, K. S. Sahanand, A. Bhattacharyya & S. Rajendran, S., "Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering", Nanomedicine: Nanotechnology, Biology and Medicine, vol. 21, 2019.
[2] م. کلانتری، م. محمودی و م. میرحاج، "تاثیر نانو ذرات هیدروکسی آپاتیت بر تمایز سلول های بنیادی مزانشیمی به سلول های استخوانی در داربست های پلی کاپرولاکتون/کراتین/هیدروکسی آپاتیت"، فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، دوره 14، بهار 1399.
[3] H. Qu, H. Fu, Z. Han & Y. Sun, "Biomaterials for bone tissue engineering scaffolds: a review", RSC advances, vol. 9, no. 45, 2019.
[4] A. K. Mitra, K. Cholkar & A. Mandal, eds., "Emerging nanotechnologies for diagnostics, drug delivery and medical devices", William Andrew, 2017.
[5] R. Nayak, R. Padhye, I. L. Kyratzis, Y. B. Truong & L. Arnold, "Recent advances in nanofibre fabrication techniques", Textile Research Journal, vol. 82, no. 2, 2012.
[6] M. Najafiasl, S. Osfouri, R. Azin & S. Zaeri, "Alginate-based electrospun core/shell nanofibers containing dexpanthenol performed well in-vitro: A candidate for wound dressing", Journal of Drug Delivery Science and Technology,vol. 57, 2020.
[7] M. Rafiei, E. Jooybar, M. J. Abdekhodaie & M. Alvi, "Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery", Materials Science and Engineering: C, vol. 113, 2020.
[8] P. Chen, L. Liu, J. Pan, J. Mei, C. Li & Y. Zheng, "Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering", Materials Science and Engineering: C, vol. 97, 2019.
[9] J. Baek, E. Lee, M. K. Lotz & F. D D'Lima, "Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration", Nanomedicine: Nanotechnology, Biology and Medicine, vol. 23, 2020.
[10] N. R. Tanha & M. Nouri, "Core/Shell Nanofibers of Silk Fibroin/Polyvinyl Alcohol: Structure and Controlled Release Behavior", Iran. J. Polym. Sci. Technol.(Persian), vol. 30, 2018.
[11] M. Matinfar, A. S. Mesgar & Z. Mohammadi, "Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering", Materials Science and Engineering: C, vol. 100, 2019.
[12] T. Mohan, S. Hribernik, R. Kargl & K. Stana-Kleinschek, "Nanocellulosic materials in tissue engineering applications Cellulose—fundamental aspects and current trends", Rijeka: InTech; 2015.
[13] R. Sedghi & A. Shaabani, "Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms", Polymer ,vol. 101, 2016.
[14] M. Kong, X. G. Chen, K. Xing & H. J. Park, "Antimicrobial properties of chitosan and mode of action: a state of the art review", International journal of food microbiology, vol. 144, no. 1, 2010.
[15] ن. کوپائی و ا. کارخانه، "بررسی خصوصیات مکانیکی و بیولوژیکی داربست مهندسی بافت بر پایه پلی کاپرولاکتون عامل دار و پلی اتیلن گلایکول دی آکریلات تقویت شده با ذرات هیدروکسی آپاتیت"، فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، دوره 12، پاییز 1397.
[16] P. X. Ma & R. Zhang, "Synthetic nano‐scale fibrous extracellular matrix", Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, vol. 46, no. 1, 1999.
[17] S. Hong & G. H. Kim, "Electrospun polycaprolactone/silk fibroin/small intestine submucosa composites for biomedical applications", Macromolecular Materials and Engineering, vol. 295, no. 6, 2010.
[18] J. Choukroun & A. Fabien, Christian Schoeffler, and A. P. R. F. Vervelle. "Une opportunité en paro-implantologie: le PRF", Implantodontie, vol. 42, no. 55, 2001.
[19] Y. K. Hsu, S. Y. Sheu, C. Y. Wang, M. H. Chuang, P. C. Chung, Y. S. Luo, J. J. Huang, F. Ohashi, H. Akiyoshi & T. F. Kuo, "The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model", The Knee, vol. 25, no. 6, 2018.
[20] V. Gassling, J. Hedderich, Y. Açil, N. Purcz, J. Wiltfang & T. Douglas, "Comparison of platelet rich fibrin and collagen as osteoblast‐seeded scaffolds for bone tissue engineering applications", Clinical Oral Implants Research, vol. 24, no. 3, 2013.
[21] Y. W. Eom, J. E. Oh, Lee, S. K. Baik, K. J. Rhee, H. C. Shin, Y. M. Kim, C. M. Ahn, J. H. Kong, H. S. Kim K. Y. Shim, "The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells", Biochemical and biophysical research communications, vol. 445, no.1, 2014.
[22] L. Ding, S. Tang, P. Liang, C. Wang, P. F. Zhou & L. Zheng, "Bone regeneration of canine peri-implant defects using cell sheets of adipose-derived mesenchymal stem cells and platelet-rich fibrin membranes", Journal of Oral and Maxillofacial Surgery, vol. 77, no. 3, 2019.
[23] Y. J. Jee, "Use of platelet-rich fibrin and natural bone regeneration in regenerative surgery", Journal of the Korean Association of Oral and Maxillofacial Surgeons, vol. 45, no. 3, 2019.
[24] C. Wang, K. W. Yan, Y. D. Lin & P. C. Hsieh, "Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release", Macromolecules, vol. 43, no. 15, 2010.
[25] F. Chen, X. Li, X. Mo, C. He, H. Wang & Y. Ikada, "Electrospun chitosan-P (LLA-CL) nanofibers for biomimetic extracellular matrix", Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 5, 2008.
[26] K. Jalaja, D. Naskar, S. C. Kundu & N. R. James, "Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications", Carbohydrate polymers, vol. 136, 2016.
[27] W. Yang, J. Fu, D. Wang, T. Wang, H. Wang, S. Jin & N. He, "Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning", Journal of Biomedical Nanotechnology, vol. 6, no. 3, 2010.
[29] A. L. Yarin, "Coaxial electrospinning and emulsion electrospinning of core–shell fibers", Polymers for Advanced Technologies, vol. 22, no. 3, 2011.
[28] A. L. Yarin, "Coaxial electrospinning and emulsion electrospinning of core–shell fibers", Polymers for Advanced Technologies, vol. 22, no. 3, 2011.
[29] O. Gryshkov, N. I. Klyui, V. P. Temchenko, V. S. Kyselov, A. Chatterjee, A. E. Belyaev, L. Lauterboeck, D. Iarmolenko B. Glasmacher, "Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants", Materials Science and Engineering: C, vol. 68, 2016.
[30] M. Mirhaj, M. Mahmoodi & A. Shybani, "Effect of Hydroxyapatite Nanoparticles on Properties of Keratin/Poly Caprolactone Nanofibers for Tissue Engineering", Journal of Advanced Materials in Engineering (Esteghlal), vol. 36, no. 4, 2018.
[31] N. P. Rijal, U. Adhikari, S. Khanal, D. Pai, J. Sankar & N. Bhattarai, "Magnesium oxide-poly (ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications", Materials Science and Engineering: B, vol. 228, 2018.
[32] M. Wu, G. Chen & Y. P. Li, "TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease", Bone research, vol. 4, 2016.
[33] J. A. Siddiqui & N.C. Partridge, "Physiological bone remodeling: systemic regulation and growth factor involvement", Physiology, vol. 31, no. 3, 2016.
[34] C. H. Kiernan, E. B. Wolvius, P. A. Brama & E. Farrell, "The immune response to allogeneic differentiated mesenchymal stem cells in the context of bone tissue engineering", Tissue Engineering Part B: Reviews, vol. 24, no. 1, 2018.
[35] R. Najafi-Taher, M. A. Derakhshan, R. Faridi-Majidi & A. Amani, "Preparation of an ascorbic acid/PVA–chitosan electrospun mat: a core/shell transdermal delivery system", RSC Advances, vol. 5, no. 62, 2015.
[36] D. M. Dos Santos, P. A. Chagas, I. S. Leite, N. M. Inada, S. R. De Annunzio, C. R. Fontana, S. P. Campana-Filho & D. S. Correa, "Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment", International journal of biological macromolecules, vol. 142, 2020.
[37] F. M. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, "PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation", Carbohydrate polymers. vol. 118, 2015.
[38] S. Surucu & H. T. Sasmazel, "Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds", International journal of biological macromolecules, vol. 92, 2016.
[39] T. T. T. Nguyen, O. H. Chung & J. PS. Park, "Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity", Carbohydrate Polymers, vol. 86, no. 4, 2011.
[40] K. Fujihara, W. E. Teo, T. C. Lim, S. Ramakrishna & Z. "An introduction to electrospinning and nanofibers", National University of Singapore, USA, 2005.
[41] J. Tang, Y. Liu, B. Zhu, Y. Su & X. Zhu, "Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent", Applied Surface Science, vol. 393, 2017.
[42] J. L. Lowery, N. Datta & G. C. Rutledge, "Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats", Biomaterials, vol. 31, no. 3, 2010.
[43] J. M. Deitzel, J. Kleinmeyer, D. E. A. Harris & N. B. Tan, "The effect of processing variables on the morphology of electrospun nanofibers and textiles", Polymer, vol. 42, no. 1, 2001.
[44] M. Gong, C. Huang, Y. Huang, G. Li, C. Chi, J. Ye, W. Xie, R. Shi & L. Zhang, "Core-sheath micro/nano fiber membrane with antibacterial and osteogenic dual functions as biomimetic artificial periosteum for bone regeneration applications", Nanomedicine: Nanotechnology, Biology and Medicine, vol. 17, 2019.
[45] R. Sedghi, M. Gholami, A. Shaabani, M. Saber & H. Niknejad, "Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence." European Polymer Journal, vol. 123, 2020.
[46] J. Liu, K. Yue, L. Xu, J. Wu, Z. Chen, L. Wang, W. Liu & W. Lu, "Bonding performance of melamine-urea–formaldehyde and phenol-resorcinol–formaldehyde adhesive glulams at elevated temperatures", International Journal of Adhesion and Adhesives, vol. 98, 2020.
[47] M. M. M. De-Paula, S. Afewerki, B. C. Viana, T. J. Webster, A. O. Lobo & F. R. Marciano, "Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity", Materials Science and Engineering: C, vol. 103, 2019.
[48] F. J. O'brien, "Biomaterials & scaffolds for tissue engineering", Materials today, vol. 14, no. 3, 2011.
[49] R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar & S. Ramakrishna, "Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering." International journal of cardiology, vol. 167, no. 4, 2013.
[50] Y. Lu, J. Huang, G. Yu, R. Cardenas, S. Wei, E. K. Wujcik & Z. Guo, "Coaxial electrospun fibers: applications in drug delivery and tissue engineering", Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8.5, 2016.
[51] I. K. Kwon, S. Kidoaki & T. Matsuda, "Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential", Biomaterials, vol. 26, no. 18, 2005.
[52] Z. Wang, L. Han, T. Sun, W. Wang, X. Li & B. Wu, "Preparation and effect of lyophilized platelet-rich fibrin on the osteogenic potential of bone marrow mesenchymal stem cells in vitro and in vivo." Heliyon, vol, 5, no.10, pp. 2739, 2019
[53] J. S. Kim, M. H. Jeong, J. H. Jo, S. G. Kim & J. S. Oh, "Clinical application of platelet-rich fibrin by the application of the double J technique during implant placement in alveolar bone defect areas", Implant dentistry, vol. 22, no. 3, 2013.
_||_