اثر جانشانی کاتیون Gd بر خواص ساختاری و الکترومغناطیسی هگزافریت باریم نوع Z
محورهای موضوعی : سنتز موادمحمد جزیره پور 1 , احمد پوربافرانی 2 , زینت میرزایی 3
1 - استادیار، دانشکده الکتروسرام و مهندسی برق، دانشگاه صنعتی مالک اشتر، ایران.
2 - استادیار، دانشکده الکتروسرام و مهندسی برق، دانشگاه صنعتی مالک اشتر، ایران.
3 - دانشجوی کارشناسی ارشد، علوم و فناوری نانو (نانوفیزیک)، دانشگاه صنعتی مالک اشتر، ایران.
کلید واژه: جذب مایکروویو, گذردهی الکتریکی, نفوذپذیری مغناطیسی, آسیابسر پرانرژی, هگزافریت باریم نوع Z,
چکیده مقاله :
در این تحقیق اثر جانشانی کاتیون گادولونیوم بر خواص ساختاری و الکترومغناطیسی ترکیب هگزافریت باریم نوع Z مورد بررسی قرار گرفت. این گروه از ترکیب ها به صورت Ba3Co2-xGdxFe24O41 و به ازای مقادیر جانشانی 0، 1/0، 3/0، 5/0، 8/0 و 2/1 با استفاده از روش آسیابسر پرانرژی تولید شدند. برای بررسی دمای تشکیل فاز و اثر اندازه ی ذرات بر خواص این ترکیب، از نمونه ی Ba3Co1.6Gd0.4Fe24O41 آنالیزهای پراش پرتوایکس (XRD) و تصاویر میکروسکوپ الکترونی روبشی (SEM) گرفته شد. بهمنظور بررسی خواص الکترومغناطیسی این ترکیب ها، قسمت های حقیقی و موهومی ضرایب گذردهی الکتریکی ( ) و نفوذپذیری مغناطیسی ( ) نمونه ها توسط آنالیزگر برداری شبکه (VNA) اندازه گیری شد. با استفاده از این ضرایب، نمودارهای اتلاف بازتابی ترکیبات در محدوده ی فرکانسی GHz 18-1 ترسیم شد. با بررسی نمونهها از لحاظ بیشترین میزان شدت جذب و پهنای باند بهطور هم زمان؛ در باندهای فرکانسی S و نمونهی با جانشانی به مقدار 5/0=x، در باند نمونهی با 3/0=x، در باند X نمونهی با 1/0=x و در باند Ku نمونهی با 2/1=x به عنوان نمونههای بهینه انتخاب شدند (GHz 2-1S:، GHz 4-2 : ، GHz 8-4: ، GHz 12-8X: ، GHz 18-12Ku:).
The effect of gadolonium cation substitution on the structural and electromagnetic properties of Z-type barium hexaferrite was investigated in this study. This group of compounds is known as Ba3Co2-xGdxFe24O41, and it was created using the energetic milling approach with substitution values of 0, 0.1, 0.3, 0.5, 0.8, 0.1, and 1.2. X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM) photos of Ba3Co1.6Gd0.4Fe24O41 samples were obtained to investigate the phase formation temperature and the effect of particle size on the properties of this compound. A network vector analyzer was used to assess the real and imaginary components of the samples' electrical permittivity (ε) and magnetic permeability (μ) in order to evaluate their electromagnetic properties (VNA). Using these coefficients, reflection loss diagrams of the compounds were created in the frequency range of 1-18 GHz. By examining the samples in terms of maximum absorption intensity and bandwidth at the same time, the samples with Gd substitution with x = 0.5 in the frequency bands S and C1, the sample with x = 0.3 in the band C2, the sample with x = 0.3 in the X band, the sample with x = 0.1 in the X band, and the sample with x = 1.2 in the Ku band were chosen as the optimal samples (S: 1-2 GHz, C1: 2-4 GHz, C2: 4-8 GHz, X: 8-12 GHz, Ku: 12-18 GHz).
[1] م. نصر اصفهانی، "تأثیر ابعاد ذرات بر روی خواص جذبی امواج رادار در کامپوزیتهای نانو ساختار فریت نوع Z / پلیمر"، فرآیندهای نوین در مهندسی مواد، دوره 7، شماره 1، صفحه 86-81، 1392.
[2] ز. میرزایی، م. جزیره پور و ا. پوربافرانی، "بررسی خواص الکترومغناطیسی و جذب ماکروویو هگزافریت نوع Z با جانشانی روی"، فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 3، صفحه 70-61، 1399.
[3] Z. W. Li, M. J. Chua & Z. H. Yang, "Studies of static, high-frequency and electromagnetic attenuation properties for Y-type hexaferrites Ba2CuxZn2−xFe12O22 and their composites". Journal of Magnetism and Magnetic Materials, vol. 382, pp. 134–141, 2015.
[4] Y. Bai, J. Zhou, Z. Gui & L. Li, "An investigation of the magnetic properties of Co2Y hexaferrite". Materials Letters, vol. 57, no. 4, pp. 807–811, 2002.
[5] G. Mu, N. Chen, X. Pan, H. Shen & M. Gu, "Preparation and microwave absorption properties of barium ferrite nanorods". Materials Letters, vol. 62, no. 6–7, pp. 840–842, 2008.
[6] A. Manhas & M. Singh, "Remarkable room temperature magnetic behaviour of ferroxplana Sr-Cu-Zn doped Z-type hexaferrites". Journal of Magnetism and Magnetic Materials, vol. 503, p.166640, 2020.
[7] X. Huo, H. Su, Y. Wang, Y. Li & X. Tang, "Effects of Zn substitution on high-frequency properties of Ba1.5Sr1.5Co2-xZnxFe22O41 hexaferrites". Ceramics International, vol. 47, no. 12, pp.17120-17127, 2021.
[8] M. Kumar Manglam & M. Kar, "Effect of Gd doping on magnetic and MCE properties of M-type barium hexaferrite". Journal of Alloys and Compounds, p. 163367, 2021.
[9] S. Kolev, P. Peneva, K. Krezhov, T. Malakova, C. Ghelev, T. Koutzarova, D. Kovacheva, B. Vertruyen, R. Closset, L. Maria Tran & A. Zaleski, "Structural, Magnetic and Microwave Characterization of Polycrystalline Z-Type Sr3Co2Fe24O41 Hexaferrite". Materials, vol. 13, no. 10, p. 2355, 2020.
[10] K. Singha, R. Jasrotia, V. P. Singh, M. Chandel, R. Kumar & S. Kalia, "A study of magnetic properties of Y–Ni–Mn substituted Co2Z-type nanohexaferrites via vibrating sample magnetometry". Journal of Sol-Gel Science and Technology, vol. 97, no. 2, pp. 373-381, 2021.
[11] J. Xu, G. Ji, H. Zou, Y. Zhou & S. Gan, "Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites". Journal of Alloys and Compounds, vol. 509, no. 11, pp. 4290–4294, 2011.
[12] R. Joshi, C. Singh, J. Singh, D. Kaur & S.B. Narang, "A study of microwave absorbing properties in Co–Gd doped M-type Ba–Sr hexaferrites prepared using ceramic method". Journal of Materials Science: Materials in Electronics, vol. 28, no. 16, pp. 11969-11978, 2017.
[13] S. B. S. Magham, M. Sharma, S. R. Shannigrahi, Hui Ru Tan, V. Sharma, Yu Song Meng, S. Idapalpati, R. V. Ramanujan & D. V. M. Repaka, "Development of Z-type hexaferrites for high frequency EMI shielding applications". Journal of Magnetism and Magnetic Materials, vol. 441, pp. 303-309, 2017.
[14] P. N. Dhruv, R. C. Pullar, C. Singh, F. E. Carvalho, R. B. Jotania, S. S. Meena & J. Singh, "Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: Mössbauer, static and dynamic properties". Ceramics International, vol. 47, no. 1, pp. 1145-1162, 2021.
[15] P. N. Dhruv, S. S. Meena, R. C. Pullar, F. E. Carvalho, R. B. Jotania, P. Bhatt, C. L. Prajapat, J. P. B. Machado, T. C. Rao & C. B. Basak, "Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2-xGaxFe24O41 hexaferrites for microwave absorbers". Journal of Alloys and Compounds, vol. 822, p. 153470, 2020.
[16] Z. W. Li, Y. P. Wu, G. Q. Lin & L. Chen, "Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2-xFe24O41 composites". Journal of magnetism and magnetic materials, vol. 310, no. 1, pp. 145–151, 2007.
[17] H. Zhang, J. Zhou, Y. Wang, L. Li, Z. Yue & Z. Gui, "The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite". Ceramics international, vol. 28, no. 8, pp. 917–923, 2002.
[18] Y. Bai, J. Zhou, Z. Gui & L. Li, "Frequency dispersion of complex permeability of Y-type hexagonal ferrites". Materials Letters, vol. 58, no. 10, pp. 1602–1606, 2004.
[19] J. Huo, L. Wang & H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption". Journal of materials science, vol. 44, no. 15, pp. 3917–3927, 2009.
[20] M. Jazirehpour & S. A. Seyyed Ebrahimi. "Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface". Journal of Alloys and Compounds, vol. 639, pp. 280-288, 2015.
[21] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. Gupta & A. K. Srivastava, "Aluminum and chromium substituted Z-type hexaferrites for antenna and microwave absorber applications". Journal of Sol-Gel Science and Technology, vol. 85(1), pp.59-65, 2018.
_||_