ساخت پلاک غیرفلزی پلی کاپرولاکتون-نانو بغدادیت جهت استفاده در ترمیم بافتهای آسیبپذیراستخوان
محورهای موضوعی : بیوموادحسین عمادی 1 * , مهدی کاروان 2
1 - دانشگاه صنعتی اصفهان
2 - استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران
کلید واژه: بیونانوکامپوزیت, بیوسرامیک, بغدادیت, پلی کاپرولاکتون, خواص زیستی,
چکیده مقاله :
پلاکهای استخوانی فلزی سالهاست است که جهت تثبیت شکستگی استخوان در درمانهای جراحی ارتوپدی استفاده میشود. اختلاف سفتی پلاکهای فلزی و استخوان منجر به ایجاد پوکی استخوان در ناحیه زیر پلاک و افزایش احتمال شکستگی مجدد آن میشود، علاوه بر این خوردگی و سایش پلاکهای فلزی منجر به رهایش محصولات خوردگی ناخواسته در بدن میشود. برای رفع این مشکل میتوان از کامپوزیتهای پلیمر- سرامیکی تخریبپذیر استفاده کرد. هدف از این تحقیق ساخت پلاک استخوانی غیرفلزی و تخریبپذیر از جنس پلیکاپرولاکتون-بغدادیت (Ca3ZrSi2O9) جهت تثبیت و ترمیم بافتهای استخوانی آسیب می باشد. پلیکاپرولاکتون پلیمری نیمه بلورین است که در شرایط محیطی بدن بسیار زیستسازگار است ولیکن نسبت به سایر پلیمرهای زیستسازگار نرخ تخریب کمتر و انرژی شکست بالاتری دارد. بغدادیت بیوسرامیکی با خواص زیستفعالی بالا است لذا افزایش نانوذرات بغدادیت به پلیکاپرولاکتون ضمن بهبود افزایش زیستفعالی، سرعت تخریب کامپوزیت فوق را افزایش میدهد. در این تحقیق ابتدا پودر بغدادیت به روش سل- ژل تهیه شد و سپس مقادیر 0،10 و 20 درصد وزنی نانو پودر بغدادیت به محلول پلیکاپرولاکتون حلشده در کلروفوم اضافه شده و با روش ریختهگری انحلالی، فیلمهای کامپوزیتی پایه پلیمری تهیه شد. از آزمونهای پراش پرتوایکس(XRD) و میکروسکوپ الکترونی روبشی (SEM) و عبوری (TEM) بهمنظور فازشناسی، بررسی ریزساختار و مورفولوژی و از آزمون غوطهوری در محلول شبیهسازیشده بدن (SBF) جهت بررسی خواص زیستفعالی پلاکهای تولیدی استفاده شد. نتایج آزمونها بیانگر زیستفعالی بالای پلاکهای فوق است.
Metal bone plates are used to stabilize bone fractures in orthopedic surgical treatment for years. The differences between stiffness of Metal plates and bone lead to osteoporosis and increase the risk of again fractures in the area of the plate. In addition, wear and corrosion of metal plaques lead to release of unwanted corrosion products in the body. To fix this problem ceramic polymer degradable composites can be used. The purpose of this research was to fabricate non-degradable bone plate of Polycaprolactone-Baghdadite (Ca3ZrSi2O9) to stabilize and restore the bone tissue damages. Polycaprolactone (PCL) is semi-crystalline polymer with biocompatible body, but the degradation rate of PCL than other biocompatible polymer is lower and has higher fracture energy. Baghdadite is a bioceramic with high bioactivity properties, so the additions of baghdadite nanoparticles to PCL lead to increase the bioactive of PCL meanwhile improve the speed of degradation of the composites. In this study, Baghdadite powder was prepared by the sol-gel method and then values of 0, 10 and 20 wt% nano-powder added to PCL. In order to evaluate the biological properties, the test of immersion in (SBF) applied and assessment of particle shape and morphology of samples was done by scanning electron microscopy. Tensile test used to determine the mechanical properties. The results showed that the Baghdadite powder composed with average particle size of 30 nm, While have the proper distribution and uniformity in the polymer matrix; subjoin it to matrix phase lead to increased biological and strength properties of the composite.
[1] M. H. Fathi & A. Doostmohammadi, “Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant”, Journal of materials processing technology, Vol. 209, pp. 1385-1391, 2009.
[2] M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi & S. B. Moosavi, “In vitro corrosion behavior of bioceramic, metallic and bioceramic-metallic coatted stainless steel dental implant”, Dental materials, Vol. 19, pp. 188-198, 2003.
[3] A. Parsapour, M. H. Fathi, M. Salehi, A. Saatchi & M. Mehdikhani, “The effect of surface treatment on corrosion behavior of sugical 316L stainless steel implant”, International journal of ISSI, Vol. 4, pp. 34-38, 2007.
[4] M. H. Fathi, M. Mohammadi Zahrani & A. Zomorodian, “Novel fluorapatite/niobium composite coating for metallic human body implants”, Materials letter, Vol. 63, pp. 1195-1198, 2009.
[5] S. Ramakrishna, J. Mayer & E. Wintermantel, “Biomedical application of polymer-composite materials: a review”, Composite science and technology, Vol. 61, pp. 1189-1224, 2001.
[6] م. خورسندی قاینی، ع. صادقی اول شهر، س. نوخاسته، ا. مولوی و ح. امینی مشهدی، "بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیست فعال 45S5 و هیدروکسی آپاتیت(HA) به منظور استفاده در پیچ های تداخلی قابل جذب"، سال 11، صفحه 55-65، 1396.
[7] ن. کوپایی و ا. کارخانه، "بررسی خصوصیات مکانیکی و بیولوژیکی داربست مهندسی بافت بر پایه پلی کاپرولاکتون عامل دار و پلی اتیلن گلایکول دی آکریلات تقویت شده با ذرات هیدروکسی آپاتیت"، فرآیندهای نوین در مهندسی مواد، سال 12، صفحه 43-29، 1397.
[8] B. Guo & P.X. Ma, “Synthetic biodegradable functional polymers for tissue engineering: a brief review”, Science China Chemistry, Vol. 57, pp. 490-500, 2014.
[9] K. Rezwan, Q. Chen, J. Blaker & A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”, Biomaterials, Vol. 27, pp. 3413-3431, 2006.
[10] K. Fujihara, M. Kotaki & S. Ramakrishna, “Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers”, Biomaterials, Vol. 26, pp. 4139-4147, 2005.
[11] P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant & P. Supaphol, “Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles”, Journal of nanoscience and nanotechnology, Vol. 6, pp. 514-522, 2006.
[12] L. Li, G. Li, J. Jiang, X. Liu, L. Luo & K. Nan, “Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration”, Journal of Materials Science: Materials in Medicine, Vol. 23, pp. 547-554, 2012.
[13] M. Kharaziha, M. H. Fathi & H. Edris, “Development of novel aligned nanofibrous composite membranes for guided bone regeneration”, Journal of the mechanical behavior of biomedical materials, Vol. 24, pp. 9-20, 2013.
[14] T. C. Schumacher, E. Volkmann, R. Yilmaz, A. Wolf, L. Treccani & K. Rezwan, “Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route”, Journal of the mechanical behavior of biomedical materials, Vol. 34, pp. 294-301, 2014.
[15] S. Sadeghpour, A. Amirjani, M. Hafezi & A. Zamanian, “Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering”, Ceramics International, Vol. 40, pp. 16107-16114, 2014.
[16] Y. Ramaswamy, C. Wu, A. Van Hummel, V. Combes, G. Grau & H. Zreiqat, “The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic”, Biomaterials, Vol. 29, pp. 4392-4402, 2008.
[17] S. Roohani-Esfahani, C. Dunstan, B. Davies, S. Pearce, R. Williams & H. Zreiqat, “Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds”, Acta biomaterialia, Vol. 8, pp. 4162-4172, 2012.
[18] M. Zhang, C. Liu, J. Sun & X. Zhang, “Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid”, Ceramics International, Vol. 37, pp. 2025-2029, 2011.
[19] Q. Zeng, A. Yu & G. Lu, “Multiscale modeling and simulation of polymer anocomposites”, Progress in polymer science, Vol. 33, pp. 191-269, 2008.
_||_