بررسی و مقایسه خواص سایشی پوشش های مختلف بر پایه هیدروکسی اپتایت، اعمال شده به روش الکتروفورتیک بر روی آلیاژ تیتانیوم Ti-6Al-4V
محورهای موضوعی : بیوموادعلیرضا عراقی 1 * , محمد جعفر هادیانفرد 2
1 - دانشگاه شیراز
2 - عضو هیئت علمی دانشگاه شیراز بخش مهندسی مواد
کلید واژه: مقاومت به سایش, الکتروفورتیک, هیدروکسی اپتایت, ساختار تغییرات تدریجی,
چکیده مقاله :
در این تحقیق پوشش های تک لایه اکسید تیتانیوم (TiO2)، تک لایه هیدروکسی اپتایت (HA)، دو لایه HA-TiO2و پوشش با ساختار تغییرات تدریجی HA/TiO2 به روش الکتروفورتیک بر روی آلیاژ تیتانیومTi–6Al–4V اعمال گردیدند. مقاومت به ضربه پوشش های مختلف پس از عملیات تفت جوشی به وسیله رها سازی گلوله فولادی از ارتفاع های مختلف بر روی سطح پوشش، اندازه گیری شد. بررسی مقاومت به سایش پوشش های مختلف، توسط آزمون سایش به روش پین بر روی دیسک و در محلول رینگر انجام پذیرفت. در این آزمون نیروی اعمالی N 5/0 و مسافت طی شده برای سایش m 50 بود. سطح نمونه ها پس از این آزمون توسط میکروسکوپ الکترونی (SEM) مورد بررسی قرار گرفت. همچنین از نرم افزار ImageJ به منظور شبیه سازی توپوگرافی سطح سایش استفاده گردید. نتایج نشان داد که پوشش با ساختار تغییرات تدریجی اکسید تیتانیوم/هیدروکسی اپتایت از مقاومت به ضربه مطلوب تری در مقایسه با پوشش تک لایه HA و دو لایه HA-TiO2 بر خوردار است. همچنین بررسی مکانیزم سایش پوشش های مختلف نشان داد که تمامی پوشش های بررسی شده دارای مکانیزم خراشان می باشند. اما بررسی دقیق تر بر روی پوشش با ساختار تغییرات تدریجی تایید کننده حضور مکانیزم دوم در سایش این پوشش بود. به طوریکه مکانیزم جدایش (delamination) نیز به مکانیزم خراشان اضافه گردید. مقایسه میزان کاهش وزن پوشش های بررسی شده پس از آزمون سایش نشان داد که پوشش با ساختار تغییرات تدریجی از شرایط مطلوب تری در مقایسه با پوشش تک لایه هیدروکسی اپتایت بر خوردار است.
In the present study, hydroxyapatite (HA) Single layer TiO2 single layer, HA-TiO2 double layer and functionally graded HA/TiO2 coatings were deposited on Ti-6Al-4V titanium alloy substrate by electrophoretic deposition technique (EPD). Impact resistance of coatings were measured by ball drop impact test and the results showed that the HA/TiO2 functionally graded coating has more impact resistance compare to HA single layer and HA-TiO2 double layer coatings. The wear resistance of coatings were investigated by pin on disc method. The normal load and sliding distance were 0.5 N and 50 m respectively and the worn surface was observed using scanning electron microscope (SEM) and analyzed by ImageJ software. The results showed that the HA/TiO2 functionally graded coating has more wear resistance compare to HA single layer. Additionally, investigation of worn surface of coatings showed that all of the coatings have abrasive mechanism but wear mechanism for functionally graded coating, changed and delamination was added to abrasive mechanism.
[1] M. Javidi, S. Javadpour, M. E. Bahrololoom & J. Ma, “Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel”, Materials Science and Engineering, Vol. 28C, pp. 1509-1515, 2008.
[2] C. Kaya, “Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications”, Ceramics International, Vol. 34, pp. 1843-1847, 2008.
[3] M. Montazeri, C. Dehghanian, M. Shokouhfar & A. Baradaran, “Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its corrosion behavior” Applied Surface Science, Vol. 257, pp. 7268-7275, 2011.
[4] T. Moskalewicz, A. Czyrska-Filemonowicz & A. R. Boccaccini, “Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti–6Al–7Nb alloy”, Surface and Coatings Technology, Vol. 201, pp. 7467-7471 2007.
[5] P. C. Rath, L. Besra, B. P. Singh & S. Bhattacharjee, “Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies”, Ceramics International, Vol. 38, pp. 3209-3216, 2012.
[6] O. Albayrak, O. El-Atwani & S. Altintas, “Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition”, Surface and Coatings Technology, Vol. 202, pp. 2482-2487, 2008.
[7] P. C. Rath, L. Besra, B. P. Singh & S. Bhattacharjee, “Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies”, Ceramics International, Vol. 38, pp. 3209-3216, 2012.
[8] ح. فرنوش، "رفتار الکتروشیمیایی و چسبندگی پوشش های الکتروفورتیک نانوساختار HA-TiO2"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 1، 89-71، بهار، 1395.
[9] L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan & R. Asokaman, “Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications”, Ceramics International, Vol. 38, pp. 3435-3443, 2012.
[10] D. K. Jha, T. Kant, & R. K. Singh, “A critical review of recent research on functionally graded plates”, Composite Structures, Vol. 96, pp. 833-849, 2013.
[11] Araghi & M. J. Hadianfard, “Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications”, Ceramics International, Vol. 41, pp. 12668–12679, 2015.
[12] ع. عراقی، م. هادیان فرد، ط. طلایی و م. ثانی، "بررسی خواص پوشش با ساختار تغییرات تدریجی اکسید تیتانیوم/هیدروکسی اپتایت، اعمال شده به روش الکتروفورتیک بر روی آلیاژ تیتانیوم Ti6Al4V"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 2، 165-153، تابستان، 1395.
[13] ASTM Standard F3006-13, “Specification for ball drop impact resistance”, ASTM International, West Conshohocken, 2013.
[14] C. K. Lee, “Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO2 composite coatings on anodic Ti–6Al–4V substrate for biomedical applications”, Materials Science and Engineering, Vol. 177B, pp. 810– 818. 2012.
_||_