مدل سازی و پیش بینی استحکام تسلیم آلیاژ آلومینیم 6061 پس از انجام فرایند نورد تجمعی
محورهای موضوعی : فرآیندهای شکل دهی فلزات و ترمومکانیکالمحمد رضا رضائی 1 , محمدرضا طرقینژاد 2 , فخرالدین اشرفی زاده 3
1 - دانشکده فنی و مهندسی، دانشگاه دامغان، دامغان، ایران
2 - دانشگاه صنعتی اصفهان
3 - استاد، دانشگاه صنعتی اصفهان
کلید واژه: مدلسازی, آلیاژ آلومینیم 6061, نورد تجمعی, استحکام تسلیم, مکانیزمهای استحکامدهی,
چکیده مقاله :
در پژوهش حاضر خواص مکانیکی آلیاژ آلومینیم 6061 فوقریزدانه پس از سیکلهای مختلف فرایند نورد تجمعی بهصورت کمّی مورد ارزیابی قرار گرفت. جهت نیل به این هدف، مدلسازی استحکام تسلیم نمونهها بر مبنای پارامترهای ریزساختاری مستخرج از الگوهای پراش پرتو ایکس و تصاویر میکروسکوپی و استفاده از روابط ریاضی مربوطه برای محاسبه مکانیزمهای استحکامدهی صورت پذیرفت. ریزساختار نمونهها پس از سیکلهای مختلف نورد تجمعی توسط میکروسکوپ الکترونی عبوری و خواص مکانیکی آنها با آزمون کشش تکمحوری بررسی شدند. چگالی نابجاییهای ذخیره شده در نمونهها از الگوهای پراش پرتو ایکس مربوطه با استفاده از رابطه معروف ویلیامسون-هال تعیین گردید. مطالعات ریزساختاری نمایانگر تشکیل تدریجی ساختار فوقریزدانه همراه با حضور اندک رسوبات برشناپذیر با افزایش تعداد سیکلها بود. نتایج بررسی تجربی خواص مکانیکی نشان داد که استحکام تسلیم آلیاژ پس از سیکلهای مختلف نورد تجمعی افزایش پیدا کرد تا پس از سیکل سوم به MPa 278 رسید . مکانیزم استحکامدهی ناشی از مرزهای دانه با افزایش استحکام حدود MPa 95 بیشترین سهم را در افزایش استحکام تسلیم پس از سیکل اول داشت و نقش مثبت آن با افزایش تعداد سیکلهای نورد افزایش پیدا کرد. همچنین، استحکام تسلیم تجربی تعیین شده توسط آزمون کشش در توافق خوبی با استحکام تسلیم تئوری محاسبه شده از مکانیزمهای استحکامدهی بود.
In the present research, a quantitative approach was employed to investigate the mechanical properties of ultrafine grained 6061 aluminum alloy after different cycles of accumulative roll bonding (ARB) process. In this regard, the yield strength of samples was modelled based on the microstructural parameters extracted from x-ray diffraction (XRD) patterns and micrographs using corresponding mathematical equations. The microstructural features and mechanical properties of samples were analyzed by transmission electron microscopy (TEM) and uniaxial tensile test, respectively. The density of stored dislocations was calculated from XRD patterns by famous Williamson-Hall equation. Microstructural characterizations revealed that ultrafine grains as well as non-shearable precipitates were formed gradually by increasing the number of ARB cycles. The yield strength of ARBed samples was increased by increasing the number of cycles and reached to 278 MPa after third cycle. The grain refinement mechanism was the dominant strengthening mechanism in one cycle ARBed sample, contributing a strength increment estimated to about 95 MPa and its positive role was increased continuously by increasing the number of cycles. Also, the experimentally determined yield strength was in reasonable agreement with theoretically determined yield strength from strengthening mechanisms.
[1] ا. ح. اسلامی، س. م. زبرجد و م. م.مشکسار، "بررسی رفتار ساختاری، مکانیکی و الکتریکی کامپوزیت لایه ای مس تولید شده به روش اتصال نورد تجمعی"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد ، دوره 9، شماره 1، ص 1-7، بهار 1394.
[2] L. S. Toth & C. Gu, “Ultrafine-grain metals by severe plastic deformationˮ, Materials Characterization, Vol. 92, pp. 1-14, 2014.
[3] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes & T. G. Langdon, “Superplastic forming at high strain rates after severe plastic deformationˮ, Acta Materialia, Vol. 48, No. 14, pp. 3633-3640, 2000.
[4] R. Z. Valiev & T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinementˮ, Progress in Materials Science, Vol. 51, No. 7, pp. 881-981, 2006.
[5] س. متین و م. پاکشیر، "بررسی رفتار خوردگی حفرهای کامپوزیت Al-nano ZrO2 تولید شده به روش اتصال نورد تجمعی"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 10، شماره 2، ص 177-184، تابستان 1395.
[6] X. Sauvage, G. Wilde, S. Divinski, Z. Horita & R. Valiev, “Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomenaˮ, Materials Science and Engineering: A, Vol. 540, pp. 1-12, 2012.
[7] R. Z. Valiev, R. K. Islamgaliev & I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformationˮ, Progress in materials science, Vol. 45, No. 2, pp. 103-189, 2000.
[8] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer & Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformationˮ, JOM Journal of the Minerals, Metals and Materials Society, Vol. 58, No. 4, pp. 33-39, 2006.
[9] Sabirov, M. Perez Prado, J. Molina Aldareguia, I. Semenova, G. K. Salimgareeva & R. Valiev, “Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation routeˮ, Scripta Materialia, Vol. 64, No. 1, pp. 69-72, 2011.
[10] E. Ortiz Cuellar, M. Hernandez Rodriguez & E. García Sanchez, “Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformationˮ, Wear, Vol. 271, No. 9, pp. 1828-1832, 2011.
[11] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai & R. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) processˮ, Scripta materialia, Vol. 39, No. 9, pp. 1221-1227, 1998.
[12] J. Del Valle, M. Pérez-Prado & O. Ruano, “Accumulative roll bonding of a Mg-based AZ61 alloyˮ, Materials Science and Engineering: A, Vol. 410, pp. 353-357, 2005.
[13] M. Alizadeh & M. Paydar, “High-strength nanostructured Al/B 4 C composite processed by cross-roll accumulative roll bondingˮ, Materials Science and Engineering: A, Vol. 538, pp. 14-19, 2012.
[14] R. Jamaati, M. R. Toroghinejad, S. Amirkhanlou & H. Edris, “Strengthening mechanisms in nanostructured interstitial free steel deformed to high strainˮ, Materials Science and Engineering: A, Vol. 639, pp. 656-662, 2015.
[15] S. A. Hosseini & H. D. Manesh, “High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB processˮ, Materials & Design, Vol. 30, No. 8, pp. 2911-2918, 2009.
[16] H. Yu, L. Su, C. Lu, K. Tieu, H. Li, J. Li, A. Godbole & C. Kong, “Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageingˮ, Materials Science and Engineering: A, Vol. 674, pp. 256-261, 2016.
[17] C. Y. Chou, C. W. Hsu, S. L. Lee, K. W. Wang & J. C. Lin, “Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusionˮ, Journal of materials processing technology, Vol. 202, No. 1, pp. 1-6, 2008.
[18] M. R. Rezaei, M. R. Toroghinejad & F. Ashrafizadeh, “Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bondingˮ, Materials Science and Engineering: A, Vol. 529, pp. 442-446, 2011.
[19] K. T. Park, H. J. Kwon, W. J. Kim & Y. S. Kim, “Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding processˮ, Materials Science and Engineering: A, Vol. 316, No. 1, pp. 145-152, 2001.
[20] S. H. Lee, Y. Saito, T. Sakai & H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingˮ, Materials Science and Engineering: A, Vol. 325, No. 1, pp. 228-235, 2002.
[21] S. O. Gashti, A. Fattah alhosseini, Y. Mazaheri & M. K. Keshavarz, “Microstructure, mechanical properties and electrochemical behavior of AA1050 processed by accumulative roll bonding (ARB)ˮ, Journal of Alloys and Compounds, Vol. 688, pp. 44-55, 2016.
[22] M. Eizadjou, H. D. Manesh & K. Janghorban, “Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB processˮ, Journal of Alloys and Compounds, Vol. 474, No. 1, pp. 406-415, 2009.
[23] G. Williamson & W. Hall, “X-ray line broadening from filed aluminium and wolframˮ, Acta metallurgica, Vol. 1, No. 1, pp. 22-31, 1953.
[24] M. H. Farshidi, M. Kazeminezhad & H. Miyamoto, “Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatmentsˮ, Materials Science and Engineering: A, Vol. 563, pp. 60-67, 2013.
[25] V. Bratov & E. Borodin, “Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAPˮ, Materials Science and Engineering: A, Vol. 631, pp. 10-17, 2015.
[26] H. J. Roven, M. Liu & J. C. Werenskiold, “Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloyˮ, Materials Science and Engineering: A, Vol. 483, pp. 54-58, 2008.
[27] R. Jamaati, M. R. Toroghinejad, J. Dutkiewicz & J. A. Szpunar, “Investigation of nanostructured Al/Al 2 O 3 composite produced by accumulative roll bonding processˮ, Materials & Design, Vol. 35, pp. 37-42, 2012.
[28] J. Z. Zhao, A. K. De & B. C. De Cooman, “Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steelsˮ, Materials Letters, Vol. 44, No. 6, pp. 374-378, 2000.
[29] K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia & J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloyˮ, Acta Materialia, Vol. 62, pp. 141-155, 2014.
[30] V. Rajkovic, D. Bozic, J. Stasic, H. Wang & M. T. Jovanovic, “Processing, characterization and properties of copper-based composites strengthened by low amount of alumina particlesˮ, Powder Technology, Vol. 268, pp. 392-400, 2014.
[31] N. Kamikawa, X. Huang, N. Tsuji & N. Hansen, “Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealedˮ, Acta Materialia, Vol. 57, No. 14, pp. 4198-4208, 2009.
[32] M. Rezaei, S. Shabestari & S. Razavi, “Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix compositeˮ, Journal of Materials Science & Technology, 2017.
[33] B. Li, A. Godfrey, Q. Meng, Q. Liu & N. Hansen, “Microstructural evolution of IF-steel during cold rollingˮ, Acta Materialia, Vol. 52, No. 4, pp. 1069-1081, 2004.
[34] S. Malopheyev, V. Kulitskiy & R. Kaibyshev, “Deformation structures and strengthening mechanisms in an Al Mg Sc Zr alloy, Journal of Alloys and Compoundsˮ, Vol. 698, pp. 957-966, 2017.
[35] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki & T. Furuhara, “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steelsˮ, Acta Materialia, Vol. 83, pp. 383-396, 2015.
_||_