تأثیر نورد سرد و آنیل بر ریزساختار و خواص کششی سوپرآلیاژ Hastelloy X
محورهای موضوعی : فرآیندهای شکل دهی فلزات و ترمومکانیکالحمید فیض آبادی 1 * , سید مهدی عباسی 2 , مریم مرکباتی 3 , رشید مهدوی 4 , محمدرضا توکلی 5
1 - دانشگاه صنعتی مالک اشتر تهران
2 - دانشگاه صنعتی مالک اشتر تهران
3 - دانشگاه صنعتی مالک اشتر تهران
4 - دانشگاه صنعتی مالک اشتر تهران
5 - دانشگاه سمنان
کلید واژه: ریزساختار, خواص کششی, نورد سرد, سوپرآلیاژ Hastelloy X, آنیل,
چکیده مقاله :
هدف از پژوهش حاضر، بررسی اثر میزان نورد سرد به همراه آنیل میانی و آنیل نهایی بر ریزساختار و خواص کششی سوپرآلیاژ Hastelloy X است. بدین منظور تسمه نورد گرم و آنیل انحلالی شده این آلیاژ به ضخامت 10 میلیمتر تحت سه مرحله نورد سرد (در هر مرحله 50 درصد) همراه با آنیل میانی در دمای C°1175 به مدت نیم ساعت قرار گرفت تا اینکه ضخامت آن به 25/1 میلیمتر رسید. سپس نمونههای آماده شده جهت آزمون کشش در محدودهی دمایی C° 860-660، تحت عملیات آنیل در محدوده دمایی C°1200-1100 به مدت یک ساعت قرار گرفتند. خواص کششی دمای محیط و دمای بالا همراه با ریزساختار تسمهها مورد بررسی قرار گرفت. نتایج بررسی ریزساختار نمونه آنیل انحلالی شده در دمای C°1175 به مدت یک ساعت نشان داد که فاز زمینه آستنیت و ذرات موجود کاربیدM6C غنی از مولیبدن میباشند. نتایج آزمون کشش گرم نمونههای آنیل شده در دماهای 1100، 1150 و C°1200 نشان داد که حداقل داکتیلیته به ترتیب در دماهای 760، 760 و C°860 به دست آمد. همچنین مشخص شد که استحکام تسلیم در سوپرآلیاژ Hastelloy X برای محدودهی دمایی C°660 تا C°860 مستقل از دما است که دلیل آن میتواند رسوب کاربیدهای M6C غنی از مولیبدن باشد.
In this study, the effects of cold rolling and intermediate and final annealing on the microstructure and tensile properties of Hastelloy X alloy was investigated. Three-stage cold rolling followed by intermediate annealing at 1175 ºC for 0.5 hr were performed on 10 mm thick strip at hot rolled and solution annealed condition to obtain the final thickness of 1.25 mm. The specimens prepared for tensile test within temperature range 660- 860 ºC, annealed at 1100-1200ºC for 1 hr. Microstructural investigation of the specimen’s solution annealed at temperature 1175 ºC indicated the matrix is austenite and dispersed particles are M6C carbides which are molybdenum rich precipitates. Hot tensile test results for specimens annealed at 1100, 1150 and 1200 ºC indicated a minimum ductility, at 760, 760 and 860 ºC, respectively. Tensile tests showed that the yield strength of the alloy had a weak temperature-dependence for temperature range 660- 860ºC, due to precipitation of molybdenum rich M6C carbides.
[1] T. Sakthivel, K. Laha, M. Nandagopal & P. Parameswaran, “Effect of Temperature and Strain Rate on Serrated Flow Behaviour of Hastelloy Xˮ, Materials Science and Engineering, Vol. 534A, pp. 580-587, 2012.
[2] B. Swaminathan, W. Abuzaid, H. Sehitoglu & J. Lambros, “Investigation Using Digital Image Correlation of Portevin-Le Chatelier Effect in Hastelloy X Under Thermo-Mechanical Loadingˮ, International Journal of Plasticity, Vol. 64, pp. 177-192, 2015.
[3] E. R. Baek, S. S. Park, R. Sihotang & S. Choi, “Heat Treatment of the Degraded Hastelloy X for High Cycle Fatigue Propertiesˮ, in Proc. 9th Int. Conf. on Fracture and strength of solid pp. 3-10, 2013.
[4] A. R. K. Chennamsetty, J. LeBlanc, S. Abotula, P. Naik Parrikar & A. Shukla, “Dynamic Response of Hastelloy X Plates Under Oblique Shocks: Experimental and Numerical Studiesˮ, International Journal of Impact Engineering, Vol. 85, pp. 97-109, 2015.
[5] B. Geddes, H. Leon & X. Huang, “Superalloys: Alloying and Performance ASM Internationalˮ, 2010.
[6] M. Aghaie-Khafri & N. Golarzi, “Dynamic and Metadynamic Recrystallization of Hastelloy X Superalloyˮ, Journal of Materials Science, Vol. 43, pp. 3717-3724, 2008.
[7] R. V. Miner & M. G. Castelli, “Hardening Mechanisms in a Dynamic Strain Aging Alloy, Hastelloy X, During Isothermal and Thermomechanical Cyclic Deformationˮ, Metallurgical Transactions, Vol. 23A, pp. 551-561, 1992.
[8] S. Asgari, “Age-Hardening Behavior and Phase Identification in Solution-Treated Aerex 350 Superalloyˮ, Metallurgical and Materials Transactions, Vol. 37A, pp. 2051-2057, 2006.
[9] W. Abuzaid, H. Sehitoglu & J. Lambros, “Plastic Strain Localization and Fatigue Micro-Crack Formation in Hastelloy Xˮ, Materials Science and Engineering, Vol. 561A, pp. 507-519, 2013.
[10] “Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 47.5Ni - 22Cr - 18.5Fe- 9.0Mo -1.5Co- 0.60W - Solution Heat Treatedˮ, SAE Aerospace Material Specifications, AMS 5536L, pp. 1-6, 2000.
[11] H. Chandler, “Heat Treater's Guide - Practices and Procedures for Nonferrous Alloysˮ, ASM International, pp. 9-97, 1996.
[12] A. I. H. Committee, ASM handbook: Heat treating: ASM International, 1991.
[13] A. Standard, “ASTM E8,Standard Test Methods for Tensile Testing of Metallic Materialsˮ, ASTM International, West Conshohocken, PA, Vol. 3, 2008.
[14] A. Standard, “ASTM E21, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materialsˮ, ASTM International, West Conshohocken, PA, 2008.
[15] S. S. P. Eung- Ryul Baek, Restu Sihotang, Sang - kyu Choi, “Heat Treatment of the Degraded Hastelloy X for High Cycle Fatigue Propertiesˮ, 9 th International Conference on Fracture & Strength of Solids, pp. 9-13, 2013.
[16] P. A. Rometsch, D. Pelliccia & X. Wu, “Evaluation of Polychromatic X-Ray Radiography Defect Detection Limits in a Sample Fabricated From Hastelloy X by Selective Laser Meltingˮ, NDT & E International, Vol. 62, pp. 184-192, 2014.
[17] W. L. C. Jr & G. W. Titus, “Evaluation Study of Hastelloy X as a Nuclear Cladding. Quarterly Progress Reportˮ, Nuclear Division Aerojet General Corporation, Vol. 1, 1968.
[18] R. L. Murray, “Report No. RP-SR-0002 Phoebus-2 Materials Final Reportˮ, Nuclear Rocket Operations, pp. 20-80, 1967.
[19] J. C. Zhao, M. Larsen & V. Ravikumar, “Phase precipitation and time–temperature-transformation diagram of Hastelloy Xˮ, Materials Science and Engineering, Vol. 293A, pp. 112-119, 2000.
[20] J. Favre, “Recrystallization of L-605 Cobalt Superalloy during Hot-Working Processˮ, Tohoku University, pp. 115-175, 2012.
[21] I. Kim, B. Choi, H. Hong, Y. Yoo & C. Jo, “Anomalous Deformation Behavior and Twin Formation of Ni-Base Superalloys at the Intermediate Temperaturesˮ, Materials Science and Engineering, Vol. 528A, pp. 7149-7155, 2011.
[22] H. Suzuki, T. Iseki & Y. Shoda, “High-Temperature Low-Cycle Fatigue Tests on Hastelloy Xˮ, Journal of Nuclear Science and Technology, Vol. 14, pp. 381-386, 1977.
[23] T. A. Saleh, “Nondestructive Evaluation of Loading and Fatigue Effects in Haynes® 230® Alloyˮ, PhD diss., University of Tennessee, pp. 20-83, 2006.
[24] W. H. Jiang, X. D. Yao, H. R. Guan, Z. Q. Hu & W. H. Jiang, “Secondary Carbide Precipitation in a Directionally Solified Cobalt-Base Superalloyˮ, Metallurgical and Materials Transactions, Vol. 30A, pp. 513-520, 1999.
[25] G. Bai, J. Li, R. Hu, Z. Tang & X. Xue, “Effect of Temperature on Tensile Behavior of Ni–Cr–W Based Superalloyˮ, Materials Science and Engineering, Vol. 528A, pp. 1974-1978, 2011.
[26] M. A. Arkoosh & N. F. Fiore, “Elevated Temperature Ductility Minimum in Hastelloy Alloy Xˮ, Metallurgical Transactions, Vol. 3, pp. 2235-2240, 1972.
[27] Z. Zhong, Y. Gu, Y. Yuan, T. Yokokawa & H. Harada, “Mechanical Properties and Fracture Modes of an Advanced Ni–Co-Base Disk Superalloy at Elevated Temperaturesˮ, Materials Characterization, Vol. 67, pp. 101-111, 2012.
[28] S. Zhang & D. Zhao, “Aerospace Materials Handbookˮ, pp. 13-50, 2012.
[29] A. I. H. Committee, ASM Handbook: Fractography: ASM International, 1987.
[30] G. E. dieter, Mechanical Metallurgy. British Library cataloguing in Publication Data, 1988.
_||_