بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوشش های MCrAlY اعمال شده به روش HVOF
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدسید سینا خلیفه سلطانی 1 , رضا ابراهیمی کهریزسنگی 2 , فرید نعیمی 3
1 - دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - دانشکده فنی و مهندسی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی،
اصفهان (خوراسگان)، اصفهان، ایران
کلید واژه: پوشش سد حرارتی (TBC), لایه TGO, سینتیک رشد, لایه میانی MCrAlY, پاشش HVOF,
چکیده مقاله :
امروزه در صنایع نیروگاهی به خصوص توربین های گازی از سوپرآلیاژهای مقاوم به خوردگی داغ و اکسیداسیون دما بالا استفاده می شود. این سوپرآلیاژها مقاومت خوبی در مقابل حمله و ورود گازهای داغ و نرمه خاکستر ناشی از احتراق سوختی و هم چنین خوردگی های اتمسفری از خود نشان می دهند. به همین دلیل استفاده از این سوپرآلیاژها در صنایع نیروگاهی امروزه مورد توجه بساری قرار دارند. از طرفی پوشش دهی پاشش حرارتی به روی این دسته از سوپرآلیاژها می تواند مقاومت به خوردگی داغ و اکسیداسیون دما بالا را افزایش دهد. در این تحقیق رفتار اکسیداسیون همدمای پوشش CoNiCrAlY وسینتیک رشد لایه اکسید حرارتی (TGO) مورد بررسی قرار گرفت. برای اعمال پوشش CoNiCrAlY Amdry 9954 بر روی زیرلایه سوپرآلیاژ پایه نیکل (اینکونل 738) از فرآیند پاشش سوخت اکسیژن سرعت بالا (HVOF) استفاده شد. نمونه های پوشش داده شده در دمای ℃ 1100 به مدت زمان های 5 تا 100 ساعت در کوره ی الکتریکی معمولی تحت اتمسفر هوا اکسید شدند. نمونه های مورد آزمایش به وسیله ی میکروسکوپ الکترونی روبشی (SEM) مجهز به آنالیز عنصری (EDS) و آنالیز تفرق اشعه X (XRD) مورد آزمون قرار گرفتند. مشخصات ریزساختار نشان دهنده ی رشد پوسته متوالی و پیوسته TGO یا همان Al2O3 بر روی پوشش می باشد. همچنین در فرآیند اکسیداسیون تشکیل اکسیدهای مخلوط مضر همانند اسپینل CoCo2O4 و NiAl2O4 و CrO3 و Y3Al5O12 بر روی Al2O3 (لایه TGO) مشاهده شد.
Today, in Power plant industry, especially gas turbine hot corrosion and oxidation resistance of high temperature superalloys used. These superalloys good resistance to attack and entry of hot gases and ash fines resulting from fuel combustion, as well as atmospheric corrosion of the show. As a result of these superalloys used in Power plant industry, especially are considering today. The thermal spray coating on these superalloys can be hot corrosion resistance and high temperature oxidation increase. In this research isothermal oxidation behavior of CoNiCrAlY coating and kinetic of growth thermally grown oxide layer (TGO) was investigated. For deposit of the CoNiCrAlY Amdry 9954 coating on superalloy nickel-base (Inconel 738) substrate used to the high-velocity oxygen-fuel (HVOF) technology. These specimens coatings were oxidized at 1100°C for 5 upto 100 h in a normal electric furnace under air atmosphere. The test specimens were examined using scanning electron microscope (SEM) and energy dispersive spectrometry analysis (EDS) together with the X-ray diffraction (XRD) analysis. Microstructural characterization showed that the growth of continuous and uniform TGO scale onto bond coat. Also, in oxidation process observed the formation of mixed oxides (as spinel) CoCo2O4 and Ni(Cr,Al)2O4 and CrO3 and Y3Al5O12 onto Al2O3 (TGO layer).
[1] T. Mori, S. Kuroda, H. Murakami, H. Katanoda, Y. Sakamoto& S. Newman, “Effects of initial oxidation on β phase depletion and oxidation of CoNiCrAlY bond coatings fabricated by warm spray and HVOF processes”, Surface & Coatings Technology, Vol. 221, pp. 59–69, 2013.
[2] PK. Wright & AG. Evans, “Mechanisms governing the performance of thermal barrier coating”, Curr Opin Solid State Mater Sci, Vol. 4, pp. 255–65, 1999.
[3] D. Bhattacharyya, M. Targa & JR. Nicholls, Surf Eng, Vol. 28, No. 2, pp. 122–8, 2012.
[4] W. Brandl, H. J. Grabke, D. Toma, J. Krüger, Surf. Coat. Technol, Vol. 41, pp. 86–87, 1996.
[5] A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier & F. S. Pettit, Prog. Mater. Sci, Vol. 46, pp. 505, 2001.
[6] E. A. G. Shillington & D. R. Clarke, Acta Mater, Vol. 47, pp. 1297, 1999.
[7] D. R. Clarke & S. R. Phillpot, Mater. Today, Vol. 8, pp. 22, 2005.
[8] W. Brandl, H. J. Grabke, D. Toma, J. Krüger, Surf. Coat. Technol, Vol. 41, pp. 86–87, 1996.
[9] L. Ajdelsztajn, J. A. Picas, G. E. Kim, F. L. Bastian, J. Schoenung, V. Provenzano, Mater. Sci. Eng, Vol. 338A, pp. 33, 2002.
[10] P. Y. Hou & J. Am. Ceram. Soc, Vol. 86, pp. 660, 2003.
[11] M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri, C. Giolli & A. Scrivani, “Isothermal oxidation resistance comparison between air plasma sprayed”, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats, Surface & Coatings Technology, Vol. 204, pp. 2499–250, 2010.
[12] A. Fossati, M. Di Ferdinando, A. Lavacchi, U. Bardi, C. Giolli & A. Scrivani, “Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel”. Surface & Coatings Technology, Vol. 204, pp. 3723–3728, 2010.
[13] E. Lugscheider, C. Herbst & L. Zhao, “Parameter studies on high velocity oxy-fuel spraying of MCrAlY coatings”, Surf. Coat. Technol, Vol. 108–109, pp. 16–23, 1998.
[14] W. Brandl, D. Toma & H. J. Grabke, “The characteristics of alumina scales formed on HVOF sprayed MCrAlY coatings”, Surf. Coat. Technol. Vol. 108–109, pp. 10–15, 1998.
[15] J. A. Haynes, E. D. Rigney, M. K. Ferber & W. D. Porter, Surf. Coat. Technol, Vol. 102, pp. 86-87, 1996.
[16] E. A. G. Shillington & D. R. Clarke, Acta Mater, Vol. 47, pp. 1297, 1999.
[17] Rabiei & A. G. Evans, Acta Mater, Vol. 48, pp. 3963, 2000.
[18] C. H. Lee, H. K. Kim, H. S. Choi & H. S. Ahn, Surf. Coat. Technol, Vol. 124, pp. 1, 2000.
[19] L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, V. Provenzano, Mater. Sci. Eng. A 338, 33, 2002.
[20] W. R. Chen, X. Wu, P. C. Patnaik & J. P. Immarigeon, “Proceedings from the 1st International Surface Engineering Congress and the 13th IFHTSE Congress”, Columbus, Ohio, Vol. 535, 2002.
[21] R. A. Miller & C. E. Lowell, “Thin Solid Films 95”, pp. 265, 1982.
[22] M. A. Gedwill, “Improved Bond Coat Coatings for Use with Thermal Barrier Coatings”, NASA TM-81567, 1980.
[23] R. A. Miller, “High Temperature Protective Coatings”, pp. 293, 1982.
[24] W. Brandl, H. J. Grabke, D. Toma & J. Krüger, Surf. Coat. Technol, Vol. 41, pp. 86-87, 1996.
[25] J. A. Haynes, M. K. Ferber, W. D. Porter & E. D. Rigney, Oxid. Met, Vol. 52, pp. 31, 1999.
[26] K. S. Chan & N. S. Cheruvu, “GT2004-53383, Proceedings of ASME Turbo Expo 2004”, Power for Land, Sea, and Air, Vienna, Austria, 2004.
[27] S. M. Meier, D. M. Nissley & K. D. Sheffler, “ASME 91-GT-40”, International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, 1991.
[28] Kh. G. Schmitt-Thomas, M. Hertter, Surf. Coat. Technol, Vol. 84, pp. 120-121, 1999.
[29] W.R. Chen, X. Wu, B. R. Marple & P. C. Patnaik, Surf. Coat. Technol, Vol. 197, pp. 109, 2005.
[30] W. R. Chen, X. Wu, B. R. Marple & P. C. Patnaik, Surf. Coat. Technol, Vol. 201, pp. 1074, 2006.
[31] W. R. Chen, X. Wu, B. R. Marple, D. R. Nagy & P. C. Patnaik, TGO growth behaviour in TBCs with APS and HVOF bond coats. Surface & Coatings Technology, Vol. 202, pp. 2677–2683, 2008.
[32] A. S Khanna & W. S Ratho, “Development of CoNiCrAlY oxidation resistant hard coatings Materials”, using high velocity oxy fuel and cold spray techniques. Int. Journal of Refractory Metals and Hard, Vol. 49, pp. 374–382, 2015.
[33] P. Richer, M. Yandouzi, L. Beauvais & B. Jodoin, “Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surface & Coatings Technology”, Vol. 204, pp. 3962–3974, 2010.
[34] Available from:URL:http://www.sulzer.com, Last visit June, info@sulzermetco.com, 2014.
[35] A. C Fox & T. W Clyne, “Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings”, Surface and CoatingsTechnology, Vol. 184, pp. 311–321, 2004.
[36] D. Strauss, U. G Müller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens & W. J. Quaddakers, “Oxide scale growth on MCrAlY bond coatings after pulsed electron beam treatment and deposition of EBPVD-TBC”, Surface and CoatingsTechnology, Vol. 135, pp. 196–201, 2001.
[37] H. Choi, B. Yoon, H. Kim & C. Lee, “Isothermal oxidation of air plasma spray NiCrAlY bond coatings”, Surface and Coatings Technology, Vol. 150, pp. 297–308, 2002.
[38] W. R Chen, X. Wu, D. Dudzinski & P. C. Patnaik, “Modification of oxide layer in plasma-sprayed thermal barrier coatings”, Surface and Coatings Technology, Vol. 200, pp. 5863–5868, 2006.
[39] Rabiei & A. G Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings”, Acta Materiala, Vol. 48, pp. 3963–3976, 2000.
[40] W. R Chen, X. Wu, B. R Marple & P. C Patnaik, “Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat”, Surface and Coatings Technology, Vol. 197, pp. 109–115, 2005.
[41] A. G Evans, D. R Mumm, J. W Hutchinson, G. H Meier & F. S. Pettit, “Mechanisms controlling the durability of thermal barrier coating”, Progress in Materials Science, Vol. 46, pp. 505–553, 2001.
[42] W. R Chen, X. Wu, B. R Marple, R. S Lima & P. C. Patnaik, “Pre-oxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating”, Surface and Coatings Technology, Vol. 202, pp. 3787–3796, 2008.
[43] M. Saremi, A. Afrasiabi & A. Kobayashi, “Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation”, Surface and Coatings Technology, Vol. 202, pp. 3233–3238, 2008.
[44] M. Daroonparvar, M. Sakhawat, H.Muhammad Azizi & M. Yajid, “The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air”, Applied Surface Science, Vol. 261, pp. 287–297, 2012.
[45] M. Daroonparvar, M. Azizi, M. Yajid, N. M. Yusof, S. Farahany, M. Sakhawat Hussain, H. R. Bakhsheshi Rad, Z. Valefi & A. Abdolahi, Trans. Nonferrous Met. Soc. China, Vol. 23, pp. 1322−1333, 2013.
[46] L. Ajdelsztajn, J. A. Picas, G. E. Kim, F. L. Bastian, J. Schoenung & V. Provenzano, “Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder”, Materials Science and Engineering, Vol. 338, pp. 33-43, 2002.
[47] J. J. Moore, “Chemical Metallurgy”, Butterworth and Co, 1981.