تعیین LST در تصاویر سنجش از دور و افزایش دقت آن با استفاده از ادغام الگوریتم های مختلف و روش های تصمیم گیری چند معیاره
محورهای موضوعی : فصلنامه علمی برنامه ریزی منطقه ایساناز نگهبانی 1 , مهدی مومنی 2 * , مینا مرادی زاده 3
1 - دانش آموخته دکتری گروه عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران.
2 - دانشیار . دانشکده عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران
3 - استادیار، دانشکده عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران
کلید واژه: سنجش از دور, لندست, دمای سطح زمین, ادغام,
چکیده مقاله :
-چکیده:
دمای سطح زمین (LST) یکی از معیارهای مهم در برنامههای کاربردی است و پایش دقیق زمانی و مکانی آن جهت مطالعات محیطی و مدیریت و برنامهریزی امری ضروری محسوب میشود. با توجه به محدودیتهایی که در ایستگاههای هواشناسی برای تعیین این پارامتر ضروری وجود دارد، به کمک الگوریتمهای مختلف و به کمک سنجندههای حاوی باندهای مادون قرمز حرارتی، میتوان این پارامتر را در سطح گستردهای تعیین کرد. دقت الگوریتمهای مختلف تعیین دمای سطح زمین با استفاده از تصاویر سنجش از دور، در مناطق مختلف و با استفاده از سنجندههای مختلف تغییر میکند و تاکنون الگوریتم مشخصی با دقت بالا برای تمام مناطق در نظر گرفته نشده است.
در این مقاله هدف تعیین دمای سطح زمین با استفاده از الگوریتمهای تک کاناله، پنجره مجزا، پلانک، تک پنجره و معادله انتقال تابشی و همچنین استفاده از روش ادغام الگوریتمهای تعیین LST به صورت وزندار و ساده است. در روش وزندار، وزن هر روش به کمک الگوریتمهای تصمیمگیری چندمعیاره TOPSIS و SAW مشخص شده است.
همزمان با عبور ماهواره لندست8 از منطقه مورد مطالعه، دمای سطح زمین برای 25 نقطه برداشت شده است. برای ارزیابی عملکرد روش پیشنهادی ادغام الگوریتمهای تعیین LST، از معیار آماری ریشه میانگین مربعات خطا (RMSE) استفاده شده است تا مقایسهای بین برداشتهای زمینی و مقادیر محاسبه شده به وسیله الگوریتمها انجام شود. نتایج نشان میدهد روش ادغام الگوریتمها که ضریب هر الگوریتم با استفاده از روش تصمیمگیری چند معیاره TOPSIS محاسبه شده است دارای بیشترین دقت است(RMSE=0.552oK). با استفاده از این الگوریتم ترکیبی، به روشهای دارای دقت بیشتر وزن بیشتری تعلق میگیرد. از بین پنج الگوریتم به طور مجزا، الگوریتم تک کاناله دارای بیسترین دقت (RMSE=0.5623oK) و الگوریتم تک پنجره دارای کمترین دقت میباشد (RMSE=1.0046ok).
Abstract
Land surface temperature (LST) is one of the important criteria in applications, and its accurate time and place monitoring is considered essential for environmental studies and management as well as planning. Considering the limitations that exist in meteorological stations to determine this necessary parameter, with the help of different algorithms and sensors containing thermal infrared bands, this parameter can be determined on a wide scale. The accuracy of different algorithms for determining the LST using remote sensing images varies in different regions, using different sensors, and so far, no specific algorithm with high accuracy has been considered for all regions.
In this article, the aim is to determine the temperature of the LST by using Single channel, Split window, Planck, Mono Window and RTE algorithms, as well as using the fusion method of LST determination algorithms in a weighted and simple way. In the weighted method, the weight of each method is determined with the help of TOPSIS and SAW multi-criteria decision-making algorithms.
At the same time as the Landsat 8 satellite passes through the study area, the LST is taken for 25 points. To evaluate the performance of the proposed method of fusion of the LST determination algorithms, the root mean square error (RMSE) statistical criterion is used to make a comparison between the ground measurements and the values calculated by the algorithms. The results show that the algorithm fusion method, where the coefficient of each algorithm is calculated using the TOPSIS multi-criteria decision-making method, has the highest accuracy (RMSE=0.552oK). By using this combined algorithm, more weight is given to more accurate methods. Among the five algorithms separately, the single-channel algorithm has the best accuracy (RMSE=0.5623oK) and the single-window algorithm has the lowest accuracy (RMSE=1.0046ok).
Extended Abstract
Introduction
Land surface temperature (LST) is an important parameter related to surface energy; as a result, researchers intend to find an accurate Algorithm to estimate it. In addition, researchers in recent decades have used various methods to determine LST, including the methods of Split window algorithm, Single channel algorithm, Mono window algorithm, Radiative transfer equation and Planck equation and etc. The performance of these methods is different when compared to each other. While Radiative transfer equation and Single channel algorithm are more sensitive to atmospheric water vapor content than Mono window algorithm and Split window algorithm especially in hot and humid conditions, Split window algorithm has the highest sensitivity to Land surface emissivity and does not require accurate atmospheric profiles. On the other hand, high quality atmospheric transmission/radiation is required in accurate determination of LST using Single channel algorithm and is not required in Mono window algorithm. Satellite-based LST retrieval is still a challenging process due to the great variability of the Earth surfaces and a priori knowledge about input parameters such as the atmospheric transmittance, LSE, the meteorological conditions, and the sensor specifications are necessary. Data fusion methods can be used to take advantage of multiple data. In this method, fused data will be produced in which more comprehensive information can be obtained. This study focuses on developing two reliable multi-criteria decision analysis method to LST determination, based on the weighted average of several LST determination approaches called TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and SAW (Simple Additive Weighting) methods. The main idea of these techniques, the preferred alternative which is the closest to the positive ideal solution and the farthest to the negative ideal solution. During 2019, data collection experiments were performed on the Iranian plateau in semi-arid region of Marvdasht (N 29°49′0.26"_29°50′44.5", E 52°42′51"_52°46′14") located in Fars province. On November 13, 2019, coinciding with the passage of the Landsat8 satellite through the region, the surface temperature of 25 points was measured by a mercury thermometer and the position of those lands was recorded by a manual GPS devise. These points were used in this research to determine the RMSE of different methods of LST retrieval.In this study, an attempt has been made to estimate the LST, by using Landsat-8 TIRS, OLI satellite data.
Methodology
Different algorithms have been defined to determine LST. Each of these algorithms has advantages and disadvantages, and one method is not considered as the most accurate algorithm for determining LST in all regions. Therefore, in this article, in addition to the five methods of LST determination, simple average and weighted average methods are also used. The weight of each method in the weighted average has been calculated using multi criteria decision making TOPSIS and SAW methods.
Results and Discussion
In this research, several methods in LST determination have been used. Due to the calculation of RMSE in the desired area, the most accurate algorithm among these algorithms is Single channel algorithm. The amount of RMSE in the Weighted mean method by TOPSIS approach has the lowest number of 0.552oK which is more accurate than the most precise methods in this region and image (Single channel algrithm). The least accurate method of retrieval of the LST in this region is Mono window algorithm, and the Weighted mean method by TOPSIS approach is 0.450oK more accurate than this method. By using the weighted mean, more weight is granted to the less-error methods.
Conclusion
Estimation of LST is an important topic of research. Because, these days, global climate is changing fast. Therefore, it is vital to investigate ways to predict change in LST change. In the study area, among the 5 algorithms of determining LST, Single channel algorithm has the most accuracy, and the weighted average method, which calculates the weight of the methods or the use of TOPSIS method, has the most accuracy.In a weighted mean methods, the weight of each method is calculated by using the TOPSIS & SAW methods and entering the RMSE of different LST determination algorithms (results of comparing the output of each algorithm with ground measurements) and simple mean is obtained from the average of the methods.
References
1-Akter, T., Gazi, M-Y., Mia, M-B. (2021). Assessment of Land Cover Dynamics, Land Surface Temperature, and Heat Island Growth in Northwestern Bangladesh Using Satellite Imagery, Environmental Processes, 8, 661-690.
2-Anding, D. and Kauth, R. (1970). Estimation of sea surface temperature from space. Remote Sensing of Environment, (1), 217-220.
3-Avdan, U. and Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT8 Satellite Data, Journal of Sensors, 1-9, http://dx.doi.org/10.1155/2016/1480307.
4-Awais, M., Li, W., Hussain, S., Masud Cheema, M.J., Cheema, M., Li, W., Song, R., Liu, C. (2022). Comparative Evaluation of Land Surface Temperature Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ. Data Agriculture, 12(2), 184. https://doi.org/10.3390/agriculture12020184.
5-A.Schultz, J., Hartmann, M., Heinemann, S., Janke, J., Jürgens, C., Oertel, D., Rücker, G., Thonfeld, F., Reinow, A. (2020). DIEGO: A Multispectral Thermal Mission for Earth Observation on the International Space Station. European Journal of Remote Sensing, 53(2), 28-38,
6-Chekroun, N., Raissouni, N., Lahraoua, M., Rhziel, F-Z., Makhloufi, A-E. (2023). THE APPRAISAL OF NOAA SATELLITES LST-SW ALGORITHMS: NOAA-20 (JPSS-1) PROPOSAL. Indian Journal of Computer Science and Engineering (IJCSE), 14(2), 370-377, DOI:10.21817/indjcse/2023/v14i1/231402098.
7-Chen, F., Yang, S., Su, Z., He, B. (2015). A new single-channel method for estimating land surface temperature based on the image inherent information: The HJ-1B case. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 80-88.
8-Djordjevic, Z., Jovanovic, S., Kostic, S., Talic-Cikmis, A., Nikolic, D. (2022). MCDM Approach in Choosing the Optimal Composite Shaft Material—Application of SAW Method. Machine and Industrial Design in Mechanical Engineering. 323-330. https://doi.org/10.1007/978-3-030-88465-930.
9-Dong, B., Dong, S., Wang, Y., Wen, F., Yu, C., Zhou, J., Song, R. (2022). Detecting Geothermal Resources in a Plateau Area: Constraints from Land Surface Temperature Characteristics Using Landsat 8 Data. Frontiers in Earth Science, 10, 1-13, doi: 10.3389/feart.2022.785900.
10-Duan, S-B., Li, Z-L., Wang, C., Zhang, S., Tang, B-H., Leng, P., Gao, M-F. (2019). Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. International Journal of Remote sensing, 40 (5-6), 1763-1778, Fifth International Symposium on Recent Advances in Quantitative Remote Sensing (RAQRS).
11-Fahmy, A-H., Abdelfatah, M-A., El-Fiky, G. (2023). Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 26, 293-306.
12-Gong, P. and Pu, R. (2012). Retrieval of Land Surface Temperature from Remote Sensing Thermal Images. Berkeley, USA: University of California.
13-Huang, W., Jiao, J., Zhao, L., Hu, Z., Peng, X., Yang, L., Li, X., Chen, F. (2023). T hermal Discharge Temperature Retrieval and Monitoring of NPPs Based on SDGSAT-1 Images. Remote Sensing, 15 (9), 10.3390/rs15092298. Guo, Y., Zhang, C. (2022), Analysis of Driving Force and Driving Mechanism of the Spatial Change of LST Based on Landsat 8. Journal of the Indian Society of Remote Sensing , 50, 1787–1801.
14-Isaya Ndossi, M. and Avdan, U. (2016). Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: a PyQGIS plugin. Remote sensing, 8(5):413.doi:https://doi.org/10.3390/rs8050413.
15-Jiang, Y., Lin, W. (2021). A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China, International Journal of Environmental Research and Public Health, 18, 5659. https://doi.org/10.3390/ijerph18115659.
16-Jiménez-Muñoz, J.C., Sobrino, J.A., Skoković, D., Mattar, C., Cristóbal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10): 1840-1843. DOI: 10.1109/LGRS.2014.2312032.
17-Khedmatzadeh, A., Mousavi, M-N., Mohamadi Torkamani, H., Mohammadi, M-S. (2021). An Analysis of Land Use Changes and Thermal Island Formation in Urmia City exclusion Using Remote Sensing, Journal of Regional Planning, 11(41), 119- 134.
18-Kumari, B., Tayyab, M., Salman, S., Mallick, J., Firoz khan, M., Rahman, A. (2018). Satellite-Driven Land Surface Temperature (LST) Using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) Data and Its Association with Built-Up and Green Cover Over Urban Delhi, India. Remote Sensing in Earth Systems Sciences, 1, 63-78.
19-Li, R., Li, H., Sun, L., Yang, Y., Hu, T., Bian, Z., Cao, B., Du, Y., Liu, Q. (2020). An Operational Split-Window Algorithm for Retrieving Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data. Remote sens, 12(16), 1-24, https://doi.org/10.3390/rs12162613.
20-Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., F.Trigo, L., Sobrino, J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.
21-Li, Z.L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z., Tang, B.H., Yan, G. (2012). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34(9-10), 3084–3127. https://doi.org/10.1080/01431161.2012.716540.
22-Li, Z-L., Wu, H., Duan, S-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B-H., Yan, G., Zhou, C. (2023). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 61(1), 1-77, https:// doi.org/10.1029/2022RG000777.
23-Liu, W., Li, J., Zhang, Y., Zhao, L., Cheng, Q. (2021). Preflight Radiometric Calibration of TIS Sensor Onboard SDG-1 Satellite and Estimation of Its LST Retrieval Ability. Remote Sensing, 13(16), https://doi.org/10.3390/rs13163242.
24-Mallick, J., Bindajam, A-A., Alqadhi, S., Ahmed, M., Thi-Hang, H., Viet-Thanh, N. (2020). A comparison of four land surface temperature retrieval method using TERRA-ASTER satellite images in the semi-arid region of Saudi Arabia. Geocarto International, 37(6), 1757-1781.
25-Mardani, R., Montaseri, H., Fazeli, M., & Khalili, R. (2023). Spatio-temporal variation of meteorological drought and its relation with temperature and vegetation condition indices using remote sensing and satellite imagery in Marvdasht city. Water and Soil Management and Modeling, 3(3), 72-89. DOI:10.22098/mmws.2022.11541.1140.
26-Mazidi, A., Hoseini, F-A. (2015). Effects of Changing Land Use and Land Cover on the Heat Island in Urban Area of Yazd Using Remote Sensing Data, Geography and Development, 13(38), 1-12.
27-Nanda Ginting, S.H., Wayahdi, M.R., Syahputra, D.)2020). Implementation of simple additive weighting (SAW) algorithm in decision support system for determining working area for cooperative, InNFOKUM, 9 (1), 1-10.
28- Ndossi, M. L., Avdan, U. (2016). Application of Open Source Coding Technologies in the Production of Land Surface Temperature (LST) Maps from Landsat: A PyQGIS Plugin. Remote sensing, 8(5), 1-31, doi: 10.3390/rs8050413.
29-Negahbani, S. (2023). Improvement of spatial and temporal resolution of soil moisture data based on the fusion of visible and Thermal infrared data of MODIS and TIRS sensors, PhD Thesis, Faculty of Civil and Transportation Engineering Department of Geomatics, University of Isfahan, 53-54.
30-Pandit, V., Bhiwani, R.J. (2015), Image Fusion Remote Sensing Applications: A Review, International Journal of Computer Applications, 120 (10), 22-32. DOI: 10.5120/21263-3846.
31-Parastatidis, D., Mitraka, Z., Chrysoulakis, n., Abrams, M.l. (2017). Online Global Land Surface Temperature Estimation from Landsat, Remote Sens, 9 (12), 1-16, doi: 10.3390/rs9121208.
32-Pradeep Kumar, B., Raghu Babu, K., Anusha, B.N., Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI / TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578, https://doi.org/10.1016/j.envc.2022.100578.
33-Qin, Z., Karnieli, A., Berliner, P. (2001). A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM data and its Application to the Israel-Egypt Border Region, International Journal of Remote Sensing, 22(18), 3719-3746, DOI:10.1080/01431160010006971.
34-Rehman, A.U, Ullah, S., Liu, Q., Khan, M.S. (2021). Comparing different space-borne sensors and methodsfor the retrieval of land surface temperature, Earth Science Informatics 14, 985–995.
35-Rongali, G., Keshari, A.K., K.Gosian, A., Khosa, R. (2018). A Mono-Window Algorithm for Land Surface Temperature Estimation from Landsat 8 Thermal Infrared Sensor Data: A Case Study of the Beas River Basin, India, Science & technology, 26 (2), 829 – 840.
36-Rozenstein, O., Qin, Z., Derimian, Y., Kernieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4): 5768-5780.
37-Sekertekin, A., Bonafon, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens, 12(2), 1-32, 294; https://doi.org/10.3390/rs12020294.
38-Sobrino, J.A., Jimenez-Munoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., Martinez, P. (2008). Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors. IEEE transactions on geoscience and remote sensing, 46(2), 316-327. DOI: 10.1109/TGRS.2007.904834.
39-Taherdoost, H. & Madanchian, M. (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia , 3(1), 77-87. https://doi.org/10.3390/encyclopedia3010006.
40-USGS. Earth Explorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 5 May 2016).
41-Uzun, B., Taiwo, M., Syidanova, A., Uzun-O, D. (2021). The Technique for order of preference by similarity to ideal solution (TOPSIS), Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering. Springer, Cham, 25-30 https://doi.org/10.1007/978-3-030-64765-0-4.
42-Valizadeh Kamran, K., Pirnazar, M., FarhadiBansouleh, V. (2015). Land Surface Temperature retrieval from Landsat 8 TIRS- comparison between Split Window algorithm and SEBAL method, Spie-The international Society for Optical Engineering, 1-10. DOI: 10.1117/12.2192491.
43-Wang, D., Chen, Y., Hu, L., A.voogt, J., Gastellu-Etchegorry, J-P., Krayenhoff, E.S. (2021). Modeling the angular effect of MODIS LST in urban areas: A case study of Toulouse, France. Remote sensing of Environment, 257, 112361, https://doi.org/10.1016/j.rse.2021.112361.
44-Wang, R., Cai, M, Ren, Ch., Bechtel, B., Xu, Y., Ng, E. (2019). Detecting multitemporal land cover change and land surface temperature in Pearl River Delta, Climate (28), 1-16.
45-Xia, H., Chen, Y., Song, C., Li, J., Quan, J., Zhou, G. (2022). Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote sensing of Environment, 273, 112972, https://doi.org/10.1016/j.rse.2022.112972.
46-Ye, X., Ren, H., Zhu, J., Fan, W., Qin, Q. (2022). Split-Window Algorithm for Land Surface Temperature Retrieval from Landsat-9 Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 15, 1-5, doi: 10.1109/LGRS.2022.3184980.
47-Zhang, J., Wang, Y. & Li, Y. (2006). A C++ Program for Retrieving Land Surface Temperature from the Data of Landsat TM/ETM+ Band 6+, Computer & Geosciences, 32, 1796-1805.
48-Zhang, X., Zhou, J., Liang, S., Chai, L., Wang, D., Liu, J. (2020). Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data. ISPRS journal of photogrammetry and Remote Sensing, 167, 321-344.
_||_