ارائه مدلی از تفکر آموزگاران در خصوص بدفهمی¬های دانش¬آموزان در مفهوم محیط و مساحت: یک مطالعه داده- بنیاد
محورهای موضوعی : پژوهش در برنامه ریزی درسی
محیا زارع
1
,
مهدی ایزدی
2
,
ابراهیم ریحانی
3
*
1 - دانشجوی کارشناسی ارشد، گروه ریاضی، دانشکده علوم پایه، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
2 - دکتری آموزش ریاضی، سازمان پژوهش و برنامه¬ریزی آموزشی، گروه ریاضی، تهران، ایران
3 - دانشیار، گروه ریاضی، دانشکده علوم پایه، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
کلید واژه: بدفهمی, محیط, مساحت, معلمان ابتدایی و نظریه داده بنیاد,
چکیده مقاله :
پژوهش حاضر با هدف ارائه مدلی از تفکر معلمان ابتدایی در مورد بدفهمیهای دانشآموزان از مفاهیم محیط و مساحت انجام شد. رویکرد اين پژوهش «کیفی» و روش مورد استفاده در آن، روش «نظریه داده بنیاد» بود. از میان رویکردهای موجود، رویکرد نظاممند اشتراوس و کوربین برگزیده شد. حوزه این مطالعه، آموزش ریاضی و قلمرو آن، معلمان مقطع ابتدایی شهرستان میبد واقع در استان یزد بوده است که انتخاب آنها به صورت هدفمند بر اساس دو معیار رسمی بودن و علاقهمند بودن به این حوزه و مشارکت در این مطالعه صورت گرفت. برای جمعآوری دادهها در این مطالعه از مصاحبه نیمهساختاریافته استفاده شد و انجام مصاحبه تا رسیدن به مرحله اشباع نظری ادامه داشت که پس از 16 مطالعه حاصل شد. دادهها به شیوه «کدگذاری» و «مقولهبندی» در سه مرحله کدگذاری باز، محوری و انتخابی مورد تحليل قرار گرفتند. یافتههای پژوهش نشان داد مقوله محوری در خصوص تفکر معلمان ابتدایی در مورد بدفهمیهای دانشآموزان از مفاهيم محیط و مساحت، «نقص شناختی» است. از نظر معلمان ماهیت این بدفهمیها عبارتند از: عدم درک مفهوم توسط دانشآموز، عدم توانایی استفاده از مفهوم به صورت ذهنی و جابجایی مفهوم با مفهومی دیگر. همچنين از نظر آنان؛ عوامل متعددي موجب ايجاد اين بدفهميها ميشوند كه از مهمترين آنها ميتوان به شیوههای تدریس معلمان، طرحوارهها و تجربیات ناکافی دانشآموزان و محتوای نامناسب اشاره كرد. مطابق نتايج اين پژوهش اگر اين بدفهميها به موقع شناسايي نشوند، ميتوانند موجب پيامدهاي منفي شوند؛ اين درحالي است كه در صورت شناسايي به موقع آنان، ميتوان از آنان به عنوان فرصتهاي غني براي ارتقاء فرآيند آموزش دانشآموزان استفاده كرد. در پژوهشهای آتی میتوان از مدل ارائه شده در این مطالعه براي تحلیل درك معلمان و محتواي کتابهاي درسی در خصوص محیط و مساحت استفاده نمود.
The present research was conducted with the aim of providing a model of primary teachers' thinking about students' misconceptions of the concepts of perimeter and area. The approach of this research was "qualitative" and the method used in it was the "grounded theory" method. Among the existing approaches, the systematic approach of Strauss and Corbin was chosen. The study is in the field of mathematics education and scope of the research was the primary school teachers of Meybod city located in Yazd province, whose selection was done purposefully based on two criteria: being formal and being interested in the field. Semi-structured interviews were used to collect data in this study, and the interviews continued until reaching the theoretical saturation stage, which was achieved after 16 studies. The data were analyzed by "coding" and "categorization" in three stages of open, central and selective coding. The findings of the research showed that the central category in primary teachers' thinking about students' misconceptions of the concepts of perimeter and area is "cognitive deficiency". According to the teachers, the nature of these misconceptions are: the student's lack of understanding of the concept, the inability to use the concept mentally, and replacing the concept with another concept. Also, according to them; Several factors cause these misconceptions, the most important of which are teachers' teaching methods, students' schemas and insufficient experiences, and inappropriate content. According to the results of this research, if these misconceptions are not identified in time, they can cause negative consequences; At the same time, if they are identified in time, they can be used as rich opportunities to improve the education process of students. In future researches, the model presented in this study can be used to analyze teachers' understanding and content of textbooks regarding perimeter and are.
Asghari, N. (2014). a model to enhance elementary teacher's ability to foster functional thinking and algebraic reasoning in elementary students, Journal of Theory and Practice in Curriculum, 2(3), 141-162 [In Persian]
Ashlock, B. (1990). Error patterns in computation. Columbus, OH: Merrill.
Ashlock, R. (2006). Error Patterns in Computation, Using Error Patterns to improve instruction (Ninth Ed). Upper Saddle River, NJ: Pearson, Merrill Prentice Hall.
Bakhshalizādeh, S. (2013). Identifying the primary school fourth grade students’ common misconceptions in content area of mathematics, Research project of Research Institute of Education Studies [In Persian]
Bakhshalizādeh, S., & broojerdiān, N. (2017). Identifying the primary school fourth grade students’ common misconceptions in content area of geometry and measurement: A comparison of their performance with the mean performance at international level. Educational Innovations, 16(4), 101-126 [In Persian]
Battista, M. (2004). Applying cognition-based assessment to elementary school students’ development of understanding of area and volume measurement. Mathematical Thinking and Learning, 6(2), 185–204. https://doi.org/10.1207/s15327833mtl0602_6.
Battista, M. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). Reston: National Council of Teachers of Mathematics.
Clements, D., & Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. In D. Clements & J. Sarama (Eds.), Engaging young children in mathematics: standards for early childhood mathematics education (pp. 299–320). Mahwah: Lawrence Erlbaum Associates.
Gardee, A., & Brodie, K. (2015). A teacher’s engagement with learner errors in her Grade 9 mathematics classroom. Pythagoras, 36(2), 1-9. http://dx.doi.org/10.4102/pythagoras.v36i2.293
Girit Yildiz, D., Osmanoglu, A., & Gundogdu Alayli, F. (2023). Providing a video-case-based professional development environment for prospective mathematics teachers to notice students’ misconceptions in measurement. J Math Teacher Educ, 26, 179–209. https://doi.org/10.1007/s10857-021-09525-0
Gooya, Z., & Hesam, A. (2007). Mental schemas: justifying students' mathematical misconceptions. Journal of Applied Psychology, 2(1), 177-200 [in Persian]
Goya, Z., & Hussam, A. (2005). The role of schemas in the formation of students' mathematical misunderstandings. Journal of Mathematics Education Development, 23(82), 16-4 [In Persian]
Greeno, G., Collins, M., & Resnick, L. (1996). Cognition and learning. In D. Berli’er & R. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York, NY: Macmillan.
Guner, P., & Akyuz, D. (2017). PRESERVICE MIDDLE SCHOOL MATHEMATICS TEACHERS' KNOWLEDGE ABOUT STUDENTS' MATHEMATICAL THINKING RELATED TO PERIMETER AND AREA. The Eurasia Proceedings of Educational & Social Sciences (EPESS), 6(1), 61-67.
Isotani, S., McLaren, B., & Altman, M. (2010). Towards Intelligent Tutoring with Erroneous Examples: A Taxonomy of Decimal Misconceptions. Proc. of the Int. Conference on Intelligent Tutoring Systems. LNCS 6095, pp. 346-348 Springer, Heidelberg.
Izadi, M., & Reyhani, E. (2020). Using an Unusual Task to Investigate Elementary School Teachers’ Mathematical -Task Knowledge and Common Content Knowledge of Fraction Concept in Tehran Province. Research in School and Virtual Learning, 7(4), 55-70. https://doi: 10.30473/etl.2020.49091.3079 [In Persian]
Izadi, M., & Reyhani, E. (2021). Investigating the understanding of Tehran’s second elementary school students of the fraction’s part- whole subconstruct, based on APOS and SOLO theories with using an unusual task. Research in Curriculum Planning, 18(68), 124-141. https://doi: 10.30486/jsre.2021.1875155.1435 [In Persian]
Kordaki, M., & Potari, D. (1998). Children’s approaches to area measurement through different contexts. Journal of Mathematical Behavior, 17(3), 303-316.
Marchiş, I. (2008). Geometry in primary school Mathematics, Educaţia, 6(2), 131-139.
Masters J., & Chapman L. (2011, April). Measuring geometric measurement ability and misconception with a single scale. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
Mathematics Navigator (2006): America’s choice, A Sample of Mathematics Misconceptions and Errors (Grades 2 – 8), https://nowledgebase.pearsonschool.com, last date of access: Dec. 192013
Morse, J. M., & Richards, L. (2002). Read me First for a User’s Guide to Qualitative Methods. Thousand Oaks, London, New Delhi: Sage.
NCTM. (2000). Principles and Standards for School Mathematics. The National Council of Teachers of Mathematics, Inc., Reston: USA.
Olivier, A. (1992). Handling pupil’s misconceptions. IN M. Moodley, R.Njisane & N. Presmeg (Eds). Mathematics Education for In-Service and Pre-Service Teachers, 193-209. Pietermaritzburg: Shuter and Shooter.
Outhred, L., & Mitchelmore, M. (2000). Young children’s intuitive understanding of rectangular area measurement. Journal for Research in Mathematics Education, 31(2), 144–167. https://doi.org/10.2307 /749749.
Runnalls, C., & Hong, D. (2017). "Well, they understand the concept of area": Pre-service teachers' responses to student area misconceptions. Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics EducationAt: Indianapolis, Indiana, (39), 881-903.
Ryan, J., & Williams, J. (2007). Children's mathematics 4-15: learning from errors and misconceptions. Open University Press.
Sarama, J., & Clements, D. (2009). Early childhood mathematics education research: learning trajectories for young children. New York: Routledge.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.
Sisman, G., & Aksu, M. (2016). A Study on Sixth Grade Students’ Misconceptions and Errors in Spatial Measurement: Length, Area, and Volume. International Journal of Science and Mathematics Education, 14(7), 1293–1319.
Strauss, A. L., & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures and Techniques. London: Sage.
Strauss, A., & Corbin, J. (1998). Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory (2nd ed.). Thousand Oaks, CA: Sage Publications.
Strutchens, M. E., Martin, W. G., & Kenney, P. A. (2003). What students know about measurement: Perspectives from the NAEP. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement (pp. 197-208). Reston: NCTM.
Üzel, D. (2018). Investigation of misconceptions and errors about division operation in fractions. Universal Journal of Educational Research, 6(11), 2656-2662. https://doi.org/10.13189/ujer.2018.061131
Willig, C. (2013). Introducing Qualitative Research in Psychology (3rd ed.). Maidenhead: Open University Press.
Yilmaz, D., & Demir, B. (2021). Mathematics Teachers' Pedagogical Content Knowledge Involving the Relationships between Perimeter and Area. Athens Journal of Education, 8(4), 361-384.