Numerical Investigations on the Effect of Pulsating Pressure on Improvement of Formability in Hydroforming of Bent Tube by FEM
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringامیر خورسندی 1 , محسن لوح موسوی 2 *
1 - مدرس، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر
2 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر.
Keywords: Finite Element Method, Hydroforming, Bent tube, pulsating pressure, Formability,
Abstract :
In this paper, hydroforming process of bent tubes in T-shaped die is studied for pulsating and linear pressure paths by the finite element method. Forming Limit Diagrams (FLDs) and thickness distribution curves are used to investigate the effect of pulsating pressure on hydroforming process. In addition, the obtained numerical results are compared with experimental results of hydroforming of straight tubes with T-shape protrusions. Itis shown that for tubes with similar bend radius and diameter of bent tube, the formability increases by linear pressure which means pulsating pressure is not so effective. But in the bent tubes whith bend radius larger than tube diameter, pulsating pressure improves formability in hydroforming process. Also, it is found that in hydroforming the pulsating pressure can not increase formability in any bent tube case. In some cases the linear pressure path is more effective for formability.
[1] Mac Donald B.J., Hashmi M., Near-Net-Shape Manufacture of Engineering Components using Bulge-Forming Process , J. Mater. Process. Technol., Vol. 120, 2002, pp. 341-347.
[2] www.opton.co.jp.
[3] Mori K., Patwari A.U., Maki, S. , Improvement of formability by Oscillation of Internal pressure in pulsating hydroforming of Tube, Annals of the CIRP, 53-1 (2004), pp. 215-218.
[4] Loh-Mousavi M., Bakhshi-Jooybari M., Mori K., Hyashi K., Improvement of formability in T-shape hydroforming of tubes by pulsating pressure, Key Engineering Materials , Vol. 222, 2008, pp. 1139-1146.
[5] Strano M., Jirathearanat S., Altan T. ,Adaptive FEM Simulation for Tube Hydroforming:a Geometry-Based Approach for Wrinkle Detection, The Ohio State University, Columbus, USA, 2001.
[6] TranaK. , Finite element simulation of the tube hydroforming process – bending, performing and hydroforming , Journal of Materials Processing Technology, 127, 2002, pp. 401–408.
[7] Loh-Mousavi M. ,Bakhshi-jooybari M., Mori K., Maeno T. , Farzin M., Hosseinipoor S.J. , 3-D Finite element simulation of pulsating free bulge hydroforming of tubes, Iranian Journal of Science & Technology, Vol. 32, No. B6, 2008, pp 611-618.
[8] Kim J., Kim S.W., Song W. J., Kang B. S., Analytical and numerical approach to prediction of forming limit in tube hydroforming , Int. J. of Mechanical Sciences, Vol. 47, 2005, pp. 1023-1037.
[9] Singh H., Fundamentals of hydroforming, Society of Manufacturing Engineers, 2003.