ارزیابی عملکرد مصالح بازیافتی نوین با کاربرد عایق حرارتی در جدارههای ساختمانی
محورهای موضوعی : معماری پایدارآرام میرمطهری 1 , مهسا رهنمائی ذکاوت 2 , سیده مامک صلواتیان 3 *
1 - دانشجوی دکتری معماری، گروه معماری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - گروه معماری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
3 - گروه معماری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: مصالح بازیافتی ساختمانی, عایق حرارتی, پوستۀ ساختمان, اثرات زیستمحیطی,
چکیده مقاله :
افزایش مداوم مصرف انرژی و آلودگی محیط زیست از چالشهای اصلی قرن بیست و یکم است. یکی از رویکردهای غلبه بر این چالشها افزایش استفاده از مواد بازیافتی و روشهای سازگار با محیط زیست در تولید است. از آنجایی كه استفاده از مصالح بازیافتی نوین بعنوان عایق حرارتی در ساختمانها میتواند نقش حیاتی در کاهش آلودگیهای زیستمحیطی داشته باشد، بهكارگیری این دسته از مواد عایق با به حداقل رساندن اتلاف حرارتی در طول گرمایش و سرمایش ساختمان در صرفهجویی مصرف انرژی كارآمد است. هدف از این تحقیق بررسی مواد بازیافتی با هدف عایقکاری جدارههای ساختمان است. از این رو روششناسی پژوهش حاضر توصیفی- تحلیلی و مبتنی بر مطالعات کتابخانهای میباشد. به اين منظور، این مقاله به ارزیابی عملکرد مصالح بازیافتی نوین در جدارههای ساختمانی با کاربرد عایق حرارتی میپردازد و تأثیر مشخصات و ویژگیهای فیزیكی و حرارتی این مواد عایق را بر عملکرد حرارتی پوسته خارجی بررسی میکند. در اين راستا، مصالح بازيافتي قابل استفاده در بخش هاي مختلف ساخت، و نيز ويژگي هاي مصالح بازيافتي كاربردي بهعنوان عايق حرارتي در جداره ساختمان در اين پژوهش مورد تشريح و بررسي قرار گرفتند. نتایج نشان میدهد که اگرچه بازار کنونی به طور کامل تحت سلطۀ برخی از مواد عایق سنتزی متداول است، امکان جایگزینی این مواد متداول با مواد بازیافتی و دستیابی به عملکرد حرارتی مورد نظر وجود دارد. در برخی موارد، مواد عایق حرارتی تولید شده از مواد بازیافتی با ضخامتي معادل مصالح اوليه، ضريب انتقال حرارتي مجاز مطابق مقررات ملي ساختمان را تامين نموده و نتایج بهتری نسبت به محصولات موجود و غالب در بازار نشان میدهند. علاوه بر آن گزارش ارزیابی چرخۀ حیات حاكی از آن است كه اثرات زیستمحیطی از طریق جایگزینی عایقهای حرارتی رایج با این مواد بازیافتی به حداقل میرسد.
Continuous increase in energy consumption and environmental pollution is one of the main challenges of the 21st century. One of the approaches to overcome these challenges is to emphasize on the use of recycled materials and environmental-friendly methods in production. Use of new recycled materials as thermal insulation in buildings would play a vital role in reducing environmental pollution and is also effective in saving energy consumption by minimizing heat loss during heating and cooling period of the building. For this purpose, this study evaluates performance of new recycled materials in building envelopes with the use of thermal insulation and examines the effect of the physical and thermal characteristics of these insulating materials on the thermal performance of the exterior walls. In this regard, recycled materials usable in various parts of a building as well as the properties of recycled materials used as thermal insulation in the building wall were investigated in this research. The results show that although the current market is completely dominated by common synthetic insulation materials, it is possible to replace these common materials with recycled materials and achieve the desired thermal performance. In some cases, thermal insulation materials produced from recycled materials with a thickness equal to the raw materials provide the heat transfer coefficient allowed according to the national building regulations and show better results than the existing and predominant products in the market. In addition, the life cycle assessment report indicates that environmental impacts are minimized by replacing common thermal insulation with these recycled materials.
1. اصغری، علیرضا؛ ابراهیمی اصل، حسن؛ ملکی گاوگانی، آیدا و ستاری ساربان قلی, حسن. (1400). ارزیابی محله پایدار شهری با ساختمانهای صفر انرژی در محله ولی عصر تبریز. فصلنامه شهر پایدار، 4(2)، 91-106. Doi:10.22034/jsc.2021.259714.1364
2. حکیمی،مجتبی.کاظمینی،محمد جواد.تاج الدینی،عباس.(1400). مدیریت بهینه سازی مصرف انرژی با رویکرد ساختمان انرژی صفر با استفاده از روش فازی، نشریه علمی – پژوهشی مهندسی سازه و ساخت، 8(6)، 241-262. https://doi.org/10.22065/jsce.2020.199064.1932
3. حسینی، سید شرف الدین و راد، سیمین (1402). بررسی تغییرات ویژگیهای فیزیکی کامپوزیت قیر با افزودن مواد بازیافتی. دوره 25 (1)، 39-51. https://doi.org/10.30495/jest.2022.61619.5431
4. دلبری، سعیده . قدمیاری ، هادی(1402) . سبکسازی ساختمان با استفاده از مصالح بازیافتی بتنی. هشتمین کنفرانس بین المللی پژوهش در علوم و مهندسی و پنجمین کنگره بین المللی عمران، معماری و شهرسازی آسیا.
5. سرتیپی پور، فرید. (1394). امكانسنجی بازیافت مصالح در بازسازی پس از سانحه (مورد پژوهش بازیافت بتن). فصلنامه مسکن و محیط و روستا، 34 (152)، 31-42.
6. شقایق محمد. (1392). مطالعه رفتار حرارتی مصالح رایج در ساخت دیوار مطالعه موردی: ساختمانهای مسکونی شهر تهران. نشریه هنرهای زیبا، 18 (1)، 69-78. https://doi.org/10.22059/jfaup.2013.36358
7. J.H Lin، T.T Li، و C.W Lo. (2016) Puncture-resisting, sound-absorbing and thermal-insulating properties of polypropylene-selvages reinforced composite nonwovens. J. Ind. Text. 45, 1477–1489.
8. Asdrubali, F; D'Alessandro, F; Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol4, 1–17.
9. Asdrubali, F; Schiavoni, S; Horoshenkov, K.V. (2012). A review of sustainable materials for acoustic applications. Build. Acoust.
10. Awwad, M., & Shbeeb, L. (2007). The use of polyethylene in hot asphalt mixtures. Am. J. Eng. Applied Sci.
11. Binici, H., Eken, M., Dolaz, M., Aksogan, O., & kara, m. (2014). An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Constr. Build. Mater. 51, 24–33.
12. Bolden, J., Abu-Lebdeh, T., & Fini , E. (2013). Utilization of Recycled and Waste Materials in Various Construction Applications. American Journal of Environmental Science.
13. Briga-Sa A Nascimento D Teixeira N. (2013). Textile waste as an alternative thermal insulation building material solution. Constr. Build. Mater. 38, 155–160.
14. Datta C Basu D Roy A Banerjee A. (2004). Mechanical and dynamic mechanical studies of epoxy/VAc‐EHA/HMMM IPN–jute composite systems. J. Appl. Polym. Sci. 91, 958–963.
15. Desarnaulds, V., Costanzo, E., Carvalho, A., & Arlaud, B. (2005). Sustainability of acoustic materials and acoustic characterization of sustainable materials. In: Proceedings of the 12th International Congress on Sound and Vibration. https://paginas.fe.u.
16. Dissanayake, D.G.K; Weerasinghe, D.U; Wijesinghe, K.A.P.; Kalpage, K.M.D.M.P. (2018).
17. Drochytka R; Dvorakova M; Hodna J .(2017). Performance evaluation and research of alternative thermal insulation based on waste polyester fibers. . Procedia Eng. 195, 236–243.
18. Fatima, S., & Mohanty, A. (2011). Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 72, 108–114.
19. Gassan, j; Chate, A; Bledzki, A .K; (2001). Calculation of elastic properties of natural fibers. J. Mater. Sci. 36, 3715–3720.
20. Gle, P., Gourdon, E., & Arnaud, L. (2011). Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 72, 249–259.
21. Gounni A El Wazna M El Alami M El Boua. (2018). Thermal performance evaluation of textile waste as an alternative solution for heat transfer reduction in buildings. . J. Sol. Energy Eng. 140, 1–6.
22. Iannace, G., Maffei, L., & Trematerra, P. (2012). On the use of “green materials” for the acoustic correction of classrooms. https://iris.unicampania.it/handle/11591/.
23. Islam, S., & Bhat, G. (2019). Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of Environmental Management.
24. J, Sedlmajer M Zach J Hroudova (2015). Possibilities of development of thermal insulating materials based on waste textile fibers. Adv. Mater. Res. 1124, 183–188.
25. K, Aghaee M, Foroughi (2013). Construction of lightweight concrete partitions using textile waste. . In: Chong, W., Gong, J., Chang, J., Siddiqui, M. (Eds.), ICSDEC 2012:.
26. Krach, A; Advani, S.G; (1996). Influence of void shape, void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite. J. Compos. Mater. 30, 933–946.
27. Leblance, R. (2018). The balance small business textile recycling facts and figures. https://www.thebalancesmb.com.
28. Massoudinejad, M. , Amanidaz, N., Santos, R. .., & Bakhshoode, R. (2019). Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials. a review article, Journal of Enviro.
29. Patnaik, A. ,., Mvubu, M., Muniyasamy, S., & Botha, A. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers andtheir biodegradation studies. . Energy Build. 92, 161–169.
30. Recycle, C. (2006). Asphalt roofing shingles recycling: Introduction. The California Department of Resources Recycling and Recovery.
31. RMA. (2011). U.S. scrap tire management summary. Rubber Manufacturers Association, Inc.
32. Roos, s; Zamani, B; Sandin, G; Peters, G.M; (2016). A life cycle assessment (LCA)-based approach to guiding an industry sector towards sustainability. the case of the Swedish apparel sector. J. Clean. Prod. 133, 691–700.
33. Trajković, D; Jordeva, S; Tomovska, E; Zafiro; (2017) Polyester apparel cutting waste as insulation material. J. Text. Inst. 108, 1238–1245.
34. van der Velden, N.M; Patel, M.K; Vogtlände (2014). LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 19, 331–356.
35. Wang Y (2010). Fiber and textile waste utilization. Waste Biomass Valorization 1, 135–143.
36. Woolridge, A.C; Ward, G.D; Phillips, P.S; (2006). Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material. an UK energy saving perspective.Resour. Conserv. Recycl. 46, 94–103.
37. Woolridge, A.C; Ward, G.D; Phillips, P.S; (2006). Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material:. an UK energy saving perspective.Resour. Conserv. Recycl. 46, 94–103.
38. Worrell, E., & and Reuter, M. (2014). Handbook of Recycling: State-of-the-art for Practitioners, Analysts,. and Scientists, Elsevier Science, 10.
39. Zach J; Korjenic A; Petránek V; Hroudová; (2012). Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 49, 246–253. https://doi.org/10.1016/j.enbuild.2012.02.014