پیشبینی مکانی حساسیت زمینلغزش با استفاده از الگوریتمهای پیشرفته یادگیری ماشین (مطالعه موردی: شهرستان سروآباد، استان کردستان)
بهارک معتمدوزیری 1 * , هیمن راست خدیو 2 , سیداکبر جوادی 3 , حسن احمدی 4
1 - دانشیار گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشجوی دکتری، گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار، گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
4 - استاد گروه احیا مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.
کلید واژه: مخاطرات طبیعی, الگوریتم جنگل تصادفی, الگوریتم درخت تصمیم, استان کردستان,
چکیده مقاله :
وقوع رخداد زمینلغزش در مناطق کوهستانی ممکن است به زیرساختها از جمله جادهها آسیب جدی وارد کند، همچنین ممکن است به مرگومیر انسانها منجر شود. هدف از انجام این مطالعه، پیشبینی مکانی خطر زمینلغزش با استفاده از الگوریتمهای پیشرفته دادهکاوی در شهرستان سروآباد (استان ...) است. در این مطالعه، پتانسیلیابی خطر زمینلغزش با استفاده از دو الگوریتم پیشرفته دادهکاوی شامل جنگل تصادفی (RF) و درخت تصمیم (DT) انجام شد. ابتدا، فایل نقطهای 166 زمینلغزش رخ داده در شهرستان سروآباد بهعنوان نقشه موجودی زمینلغزش در نظر گرفته شد. به منظور تهیه مدل و اعتبار سنجی آن، نقاط زمینلغزش به دو بخش دادههای آموزشی (70 درصد) و دادههای اعتبارسنجی (30 درصد) تقسیم میشوند. در مجموع 16 پارامتر شامل شیب، جهت جغرافیایی، ارتفاع از سطح دریا، فاصله از آبراهه، فاصله از جاده، تراکم رودخانه، فاصله از گسل، تراکم گسل، تراکم جاده، بارندگی، کاربری و پوشش اراضی، شاخص NDVI، لیتولوژی، زمینلرزه، شاخص توان آبراهه (SPI) و شاخص رطوبت توپوگرافی (TWI) بهمنظور پهنهبندی خطر زمینلغزش استفاده شدند. در نهایت، عملکرد مدلها با استفاده از منحنی مشخصه عملکرد سیستم (ROC) مورد بررسی قرار گرفت. نتایج تحلیل منحنی ویژگی عملگر نسبی نشان داد که مدلهای درخت تصمیم و جنگل تصادفی به ترتیب دارای مقدار AUC برابر 942/0 و 951/0 میباشند؛ بنابراین مدل جنگل تصادفی نسبت به درخت تصمیم دارای بالاترین مقدار AUC بوده و بهترین مدل برای پیشبینی خطر زمینلغزش در آینده در منطقه مورد مطالعه میباشد. نقشههای پتانسیل وقوع زمینلغزش، ابزارهای کارآمدی بوده؛ بهطوریکه میتوان آنها را برای مدیریت زیستمحیطی، برنامهریزی کاربری زمین و توسعه زیرساختها مورد استفاده قرار داد.
The occurrence of landslides in mountainous areas may cause serious damage to road infrastructure, and may also lead to human deaths. Therefore, the purpose of this study is to landslide susceptibility mapping using advanced machine learning algorithms in Sarovabad city. In this study, landslide susceptibility was determined using two advanced data mining algorithms including random forest (RF) and decision tree (DT). First, the point file of 166 landslides occurred in Sarovabad city was considered as the landslide inventory map. The landslide points are divided into training data (70%) and validation data (30%). A total of 16 parameters including slope, aspect, elevation, river proximity, road proximity, river density, fault proximity, fault density, road density, precipitation, land use, NDVI, lithology, earthquake, stream power index (SPI) and topographic wetness index (TWI) were used in order to landslide susceptibility mapping. Finally, the performance of the models was evaluated using the ROC curve. The results of the ROC showed that the decision tree and random forest models have AUC values of 0.942 and 0.951, respectively. Therefore, the random forest model has the highest AUC value compared to the decision tree and was the best model for predicting the risk of landslides in the future in the study area. Landslide potential maps are efficient tools; so that they can be used for environmental management, land use planning and infrastructure development.
زمانی، ل. و ریاحی، و. )1393 )مدیریت بحران و شناخت
پهنههای خطر و امن ناشی از زمین لغزش در نواحی
روستایی شهرستان سروآباد. نشریه تحقیقات کاربردی علوم
.132-117 :)35(10 ،جغرافیایی
سایت رسمی فرمانداری شهرستان سروآباد. )1393 )موقعیت
جغرافیایی شهرستان سروآباد. قابل دسترس در سایت:
.https://sarvabad.ostan-kd.ir/
Achour, Y. and Pourghasemi, H.R. (2020) How do
machine learning techniques help in increasing
accuracy of landslide susceptibility maps.
Geoscience Frontiers, 11(3): 871-883.
Ado, M., Amitab, K., Maji, A.K., Jasińska, E.,
Gono, R., Leonowicz, Z. and Jasiński, M.
(2022) Landslide susceptibility mapping using
machine learning: A literature survey. Remote
Sensing, 14(13); 25-35.
Akinci, H., Kilicoglu, C. and Dogan, S. (2020)
Random forest-based landslide susceptibility
mapping in coastal regions of Artvin, Turkey.
ISPRS International Journal of GeoInformation, 9(9): 553-553.
Arumugam, T., Kinattinkara, S., Velusamy, S.,
Shanmugamoorthy, M. and Murugan, S. (2023)
GIS based landslide susceptibility mapping and
assessment using weighted overlay method in
Wayanad: A part of Western Ghats, Kerala.
Urban Climate, 49(1): 101508.
Basu, T. and Pal, S. (2019) RS-GIS based
morphometrical and geological multi-criteria
approach to the landslide susceptibility
mapping in Gish River Basin, West Bengal,
India. Advances in Space Research, 63(3):
1253-1269.
Breiman, L. (1999) Random forests—Random
features. Technical Report 567, Statistics
Department, University of California, Berkeley:
Berkeley, CA, USA, 29p.
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong,
H., Bui, D.T., Duan, Z. and Ma, J. (2017) A
comparative study of logistic model tree,
random forest, and classification and regression
tree models for spatial prediction of landslide
susceptibility. Catena, 151(1): 147-160.
Cheng, Y.S., Yu, T.T. and Son, N.T. (2021)
Random forests for landslide prediction in
tsengwen river watershed, central taiwan.
Remote Sensing, 13(2): 199-208.
Colkesen, I., Sahin, E.K. and Kavzoglu, T. (2016)
Susceptibility mapping of shallow landslides
using kernel-based Gaussian process, support
vector machines and logistic regression.Journal
of African Earth Sciences, 118(2016): 53-64