Introducing two classes of optimal codes derived from one-weight FqFq[u]-additive codes
Subject Areas : Algebraic Structures and OptimizationNarjes Mohsenifar 1 , Sadegh Sadeghi 2 *
1 - Department of Electrical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 - Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Keywords: Additive code, Constacyclic code, Oneweight code.,
Abstract :
Let Fq be a finite field with q elements, where q = p m, and R = Fq + uFq denotes the ring Fq[u] hu2i . For positive integers α and β, a nonempty subset C of F α q × Rβ is called an FqFq[u]-additive code if C is an Rsubmodule of F α q ×Rβ . In this paper, we obtain the generator matrix of these codes and the structure of their dual codes are given. we introduce Lee weight and homogenous weight over these codes. Also, we give some bounds on the minimum distance of these codes with respect to homogenous and Lee weights. At the end, we study one-weight codes and obtain [q 2+q, 2, q2 ] and [2(q+ 1), 2, 2q] one-weight optimal codes over Fq.
[1] T. Abualrub, I. Siap, N. Aydin, Z2Z4-additive cyclic codes, IEEE Trans. Inform. Theory. 60 (3) (2014) 1508-1514.
[2] I . Aydogdu, T. Abualrub, I. Siap, On Z2Z2[u]-additive codes, Int. J. Inf. comput. math. 92 (9)(2015) 1806-1814.
[3] M. Bilal, J. Borges, S. T. Dougherty, C. Fern´andez-C´ordoba, Maximum distance separable codes over Z4 and Z2 × Z4, Des. Codes Cryptogr. 61 (2011) 31-40.
[4] J. Borges, C. Fern´andez-C´ordoba, There is exactly one Z2Z4-cyclic 1-perfect code, Des. Codes Cryptogr. (2016).
[5] J. Borges, C. Fern´andez-C´ordoba, J. Pujol, J. Rifa and M. Villanueva, Z2Z4-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010) 167-179.
[6] B. Chen, H. Q. Dinh, H. Liu, L. Wang, Constacyclic codes of length 2ps over Fpm + uFpm, Finite fields Appl. 37 (2016) 108-130.
[7] B. Chen , Y. Fan, L. Lin, H. Liu. Constacyclic codes over finite fields. Finite fields Appl. 18 (2012) 1217-1231.
[8]
H. Q. Dinh, Constacyclic codes of length ps over Fpm + uFpm, J. Algebra. 324 (2010) 940-950. [9] H. Q. Dinh, S. Dhompongsa, S. Sriboonchitta, On constacyclic codes of length 4ps over Fpm + uF pm, Discrete Math. (2016), http://dx.doi.org/10.1016/j.disc.2016.11.014
. [10] H. Q. Dinh, B. T. Nguyen, S. Sriboonchitta, T. M. Vo, On (α + uβ)- constacyclic codes of length 4ps over Fpm + uFpm, J. Algebra Appl. (2019), http://dx.doi.org/10.1142/S0219498819500233
. [11]
S. T. Dougherty, H. Liu, L. Yu, One weight Z2Z4-additive codes, Appl. Algebra Eng. Commun. Comput. 27 (2016) 123-138. [12] K. Guenda, T. A. Gulliver, MDS and self-dual codes over rings, Finite fields Appl. 18 (2012) 1061-1075
. [13] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003
. [14] J. Jitman, P. Udomkavanich. The Gray image of codes over finite chain rings. International Journal of Contemporary Mathematical Sciences, 5(10) (2010) 449-458
. [15] Z. Lu, S. Zhu, L. Wang, X. Kai, One-Lee weight and two-Lee weight Z2Z2[u]-additive codes.
(2016), http://arxiv.org/abs/1609.09588v1. [16] L. Qian, X. Cao, Bounds and optimal q-ary codes derived from the ZqR-cyclic codes, IEEE Trans. Inform. Theory. (2019),http://dx.doi.org/10.1109/TIT.2019.2927034
. [17] K. Samei and S. Mahmoudi, Singlton bounds for R-additive codes, Adv. Math. Commun. 12
(2018) 107-114. [18] A. Sharma, S. Rani. On constacyclic codes over finite fields. Cryptogr. Commun. (2015), http://dx.doi.org/10.1007/s12095-015-0163-4
. [19] B. Srinivasulu, M. Bhaintwal, Z2(Z2 + uZ2)-additive cyclic codes and their duals, Discrete Math. Alg. and Appl. 8 (2)(2016) 1-19
.