Biexciton in Strongly Oblate Ellipsoidal Quantum Dot with Relativistic Corrections
Subject Areas : Journal of Optoelectronical NanostructuresArezu Jahanshir 1 , Ekwevugbe Omugbe 2
1 - 1Department of Physics and Engineering Sciences, Buein Zahra Technical University, Buein Zahra, Iran
2 - Department of Physics, University of Agriculture and Environmental Sciences Umuagwo, Imo State, Nigeria
Keywords: Exciton, Ellipsoidal QD, Ground State Energy, Oblate Ellipsoid, Relativistic Correction,
Abstract :
Recent progress in high-technology equipment enables the fabrication of quantum dots such as GaAs, and GaAlAs confining a finite number of excitons and allowing for control of the properties of quantum dots. Biexciton quantum dots are the simplest example that can be used to upgrade optoelectronics technologies. This theoretical research investigates a model of the biexciton state in the strongly oblate ellipsoidal quantum dot with the relativistic corrections of mass and Hamiltonian in the framework of the quantum field theory due to the importance of the relativistic effect for this type of quantum dot shapes. The Sturmian function transformation and Wick ordering method to calculate the vacuum state energy eigenvalue of the biexciton system are utilized. Based on the relativistic behavior of interactions, the mass corrections to the Hamiltonian are defined. Dependence of the relativistic mass on the distances between electrons and the constituent mass to the coupling constant is obtained. The results show that as increasing quantum dot size, the relativistic mass and Hamiltonian corrections terms decrease.
[1] D.B. Hayrapetyan, Binding and recombination energies of quasi-one-dimensional excitonic complexes in ellipsoidal quantum dot, Foundations,. 2(1), 219-227, 2022. https://doi.org/10.3390/foundations2010015;
[2] S. damizadeh, et al, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, Journal of Optoelectronical Nanostructures, 5(4), 67-86, 2020. 20.1001.1.24237361.2020.5.4.5.6
[3] H.H. Xie, L.G. Jiao, A. Liu, and Y.K. Ho, High‐precision calculation of relativistic corrections for hydrogen‐like atoms with screened Coulomb potentials, International Journal of Quantum Chemistry, 121(13) e26653, 2021. https://doi.org/10.22541/au.161174809.91322689/v1.
[4] F. Rahimi, et al., Study the Energy States and Absorption Coefficients ofQuantum Dots and Quantum Anti-Dots with Hydrogenic Impurity Under the Applied Magnetic Field, Journal of Optoelectronical Nanostructures, 7(1), 1-8, 2022. https://doi.org/10.30495/jopn.2021.28784.1232
[5] K.G. Dvoyan, D.H., EM Kazaryan, Direct interband light absorption in a strongly oblated ellipsoidal quantum dot, Nanoscale research letters,. 4, 106-112, 2009. https://doi.org/10.1007/s11671-008-9209-2.
[6] M.Hsani, Raad Chegell, Electronic and optical properties of the graphene and boron nitride nanoribbons in presence of the electric field, Journal of Optoelectronical Nanostructures, 5(2), 49-64, 2020. 20.1001.1.24237361.2020.5.2.5.2
[7] D. Hayrapetyan, Direct interband light absorption in a strongly prolated ellipsoidal quantum dot, Journal of Contemporary Physics (Armenian Academy of Sciences), 42,. 292-297, 2007. https://doi.org/10.3103/S1068337207060175.
[8] M. Servatkhah, P. Hashemi, R. Pourmand, Binding energy in tuned quantum dots under an external magnetic field, Journal of Optoelectronical Nanostructures, 7(4), 2022. https://doi.org/10.30495/jopn.2022.30924.1270
[9] D.A. Baghdasaryan, D.B. Hayrapetyan, and E.M. Kazaryan, Optical properties of narrow-band prolate ellipsoidal quantum layers ensemble, Journal of Nanophotonics, 10(3) 033508, 2016. https://doi.org/10.1117/1.JNP.10.033508
[10] Y.Y. Bleyan, et al., Non-linear optical properties of biexciton in ellipsoidal quantum dot, Nanomaterials, 12(9), 1412, 2022. https://doi.org/10.3390/nano12091412
[11] C. Chang, X. Li, X. Wang, and C. Zhang, Nonlinear optical properties in GaAs/Ga0. 7Al0. 3As spherical quantum dots with Like-Deng-Fan-Eckart potential, Physics Letters A, 467, 128732, 2023. https://doi.org/10.1016/j.physleta.2023.128732
[12] N. Moshayedi, Construction of Quantum Field Theories, in Quantum Field Theory and Functional Integrals: An Introduction to Feynman Path Integrals and the Foundations of Axiomatic Field Theory, Springer, 2023.
[13] V. Kumar, S. Bhardwaj, R.M. Singh, and F. Chand, Optical properties and effect of magnetic field on energy spectra of a GaAs spherical quantum dot, The European Physical Journal Plus, 138(3), 191, 2023. https://doi.org/10.1140/epjp/s13360-023-03810-y
[14] Z.-H. Zhang, and J.-H. Yuan, Electronic and nonlinear optical properties in AlxGa1− xAs/GaAs Gaussian confinement quantum dot under applied electric field, Physica E: Low-dimensional Systems and Nanostructures, 147, 115594, 2023. https://doi.org/10.1016/j.physe.2022.115594; S. Damizadeh, M. Nayeri, F. Kalantari Fotooh, and S. Fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, Journal of Optoelectronical Nanostructures, 5(4) 67-86, 2020. https://doi.org/10.30495/jopn.2023.31332.1277
[15] M. J. Ambrosio, et al., Mathematical properties of generalized Sturmian functions, Journal of Physics A: Mathematical and Theoretical, 45(1), 015201, 2011. https://doi.org/10.1088/1751-8113/45/1/015201
[16] G. Gasaneo, et al., Three-Body Coulomb problems with generalized Sturmian functions, Advances in Quantum Chemistry, 67, 153-216, 2013. https://doi.org/10.1016/B978-0-12-411544-6.00007-8
[17] M. Dineykhan, G. Efimov, G.d. Ganbold, and S. Nedelko, Oscillator representation in quantum physics, Springer Science & Business Media, 2008, 120-198
[18] A. Jahanshir, Quanto-relativistic background of strong electron-electron interactions in quantum dots under magnetic field, Journal of Optoelectronical Nanostructures, 6(3), 1-24, 2021. https://doi.org/10.30495/JOPN.2021.28742.1231
[19] E. Hiyama, Y. Kino, and M. Kamimura, Gaussian expansion method for few-body systems, Progress in Particle and Nuclear Physics, 51(1), 223-307, 2003. https://doi.org/10.1016/S0146-6410(03)90015-9
[20] M.A Gosson, Symplectic geometry and quantum mechanics, Springer Science & Business Media, 2006, 65-94.
[21] M. Bojowald, Canonical description of quantum dynamics, Journal of Physics A: Mathematical and Theoretical, 55(50), 504006, 2023. https://doi.org/10.1088/1751-8121/acafb0
[22] R.P. Feynman, A.R. Hibbs, and D.F. Styer, Quantum mechanics and path integrals, Courier Corporation, 2010, 73-150.
[23] M.E. Peskin, An introduction to quantum field theory, CRC press, 2018.
[24] R. Rosenfelder, Path integrals in quantum physics, arXiv preprint arXiv:1209.1315, 2012. https://doi.org/10.48550/arXiv.1209.1315
[25] A. Benkrane, Position dependent mass and the extended uncertainty principle of quantum dynamics, Eliva Press SRL, 2023, 40-86.
[26] M. Douici, H. Boukabcha, and R. Fermous, Study of energies spectra and thermodynamic properties of the relativistic Dirac equation using Feynman path integral method, Physica Scripta, 98, 075405, 2023. https://doi.org/10.1088/1402-4896/acdc60
[27] M. Dineykhan, G. Efimov, and K. Namsrai, Investigation of Green Functions and the Parisi‐Wu Quantization Method in Background Stochastic Fields, Fortschritte der Physik/Progress of Physics, 39(4), 259-318, 1991. https://doi.org/10.1002/prop.2190390402
[28] A. Jahanshir, E. Omugbe, Relativistic mass of spherical layered quantum dots within harmonic potential,2nd National Conference on Technological Advances in Applied Physics, Graduate University of Advanced Technology, Kerman, Iran, 2023. https://civilica.com/l/103083/
[29] M.I. Eides, H. Grotch, and V.A. Shelyuto, Theory of light hydrogenlike atoms, Physics Reports, 342(2-3), 63-261, 2001. https://doi.org/10.1016/S0370-1573%2800%2900077-6
[30] H. Yukawa, On the interaction of elementary particles, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 17, 48-57, 1935. https://doi.org/10.1143/PTPS.1.1
[31] M. Dineykhan, and R. Nazmitdinov, Ground state spin oscillations of a two-electron quantum dot in a magnetic field, Journal of Physics: Condensed Matter,. 11(11) L83, 1999. https://doi.org/10.1088/0953-8984/11/11/002
[32] D. Hayrapetyan. Binding and recombination energies of quasi-one-dimensional excitonic complexes in ellipsoidal quantum dot, Foundations journal, 2(1) 219–222, 2022. https://doi.org/10.3390/foundations2010015
[33] L. Bao, et al, On the optical stark effect of excitons in InGaAs prolate ellipsoidal quantum dots, Journal of Nanomaterials, 5586622, 1-12, 2021. https://doi.org/10.1155/2021/5586622