Optical Properties of NiO Columnar Nanostructure Prepared by OAD Technique
Subject Areas :
Journal of Optoelectronical Nanostructures
Mohammad Hadi Karimi Tafti
1
*
,
Mahsa Fakharpour
2
1 - Department of Electrical Engineering, Mehriz Branch, Islamic Azad University, Mehriz, Iran
2 - Department of Physics, Maybod Branch, Islamic Azad University, Maybod, Iran.
Received: 2022-12-16
Accepted : 2023-06-05
Published : 2023-05-01
Keywords:
Columnar nanostructure,
Energy bandgap,
NiO thin film,
Optical constants,
Abstract :
Abstract:
NiO columnar nanostructure was prepared using the thermal evaporation technique with oblique angle deposition (OAD). The morphological, structural, and optical properties change with the creation of the substrate inclination. NiO columnar nanostructure was analyzed using X-ray diffraction (XRD) analysis and field emission scanning electron microscope (FESEM). The strain values ε obtained exhibit that the strain becomes tensile (ε>0) for (2 0 0) and (2 2 2) planes. Conversely, the strain returns to a compressive state (ε<0) for (1 1 1) and (2 2 0) planes. The average tensile strain in NiO columnar nanostructure is obtained at 1.4% while the average compressive strain is obtained at 2.04%. The value of the optical bandgap of the NiO columnar nanostructure is obtained at about 4.06 eV. The refractive index showed two absorption bands around the wavelengths of 520 nm and 700 nm with values of 2.19 and 2.22, respectively. Then, the refractive index increased from 2.22 at 700 nm to 2.35 at 920 nm and remained almost constant over 920 nm.
References:
Sato, T. Minami, S. Takata, T. Yamada. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin solid films. 236(1-2) (1993, Dec) 27-31. Available: http://doi.org/10.1016/0040-6090(93)90636-4.
Ahmmed, A. Aktar, J. Hossain, A. B. Ismail. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Solar Energy. 207 (2020, Sep) 693-702. Available: https://doi.org/10.1016/j.solener.2020.07.003.
P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, A. L. Khrypunova. Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell. Solar Energy. 164 (2018, Apr) 149-59. Available: https://doi.org/10.1016/j.solener.2018.01.054.
Azimi, S. H. Ahmadi, M. R. Manafi, S. H. Hashemi Moosavi, M. Najafi. Development a simple and sensitive method for determination low trace of nickel by local surface plasmon resonance of citrate capped silver nanoparticles. Journal of Optoelectronical Nanostructures. 6 (2021, May) 23-40. Available: https://doi.org/ 20.1001.1.24237361.2021.6.2.1.5.
Kisan, J. Kumar, S. Padmanapan, P. Alagarsamy. Defect induced ferromagnetism in NiO nanocrystals: Insight from experimental and DFT+ U study. Physica B: Condensed Matter. 593 (2020, Sep) 412319. Available: https://doi.org/10.1016/j.physb.2020.412319.
Balakarthikeyan, A. Santhanam, R. Anandhi, S. Vinoth, A. M. Al-Baradi, Z. A. Alrowaili, M. S. Al-Buriahi, K. D. Kumar. Fabrication of nanostructured NiO and NiO: Cu thin films for high-performance ultraviolet photodetector. Optical Materials. 120 (2021, Oct) 111387. Available: https://doi.org/10.1016/j.optmat.2021.111387.
T. Phan, D. Van Pham, R. A. Patil, C. H. Tsai, C. C. Lai, W. C. Yeh, Y. Liou, Y. R. Ma. Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode. Solar Energy Materials and Solar Cells. 231 (2021, Oct) 111306. Available: https://doi.org/10.1016/j.solmat.2021.111306.
W. Lin, W. C. Chung, Z. D. Zhang, M. C. Hsu. P-channel transparent thin-film transistor using physical-vapor-deposited NiO layer. Japanese Journal of Applied Physics. 57(1S) (2017, Nov) 01AE01. Available: https://doi.org/ 10.7567/JJAP.57.01AE01.
D. Hwang, T. H. Ho. Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering. Materials Science in Semiconductor Processing. 71 (2017, Nov) 396-400. Available: https://doi.org/10.1016/j.mssp.2017.09.002.
Razegh, V. Setoodeh, S. Pilban Jahromi. Influence of particle size on Magnetic behavior of nickel oxide nanoparticles. Journal of Optoelectronical Nanostructures. 2 (2017, May) 11-18. Available: https://doi.org/ 20.1001.1.24237361.2017.2.2.2.8.
Rafiee Rafat, Z. Ahangari, M. M. Ahadian, Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures, 6 (2021, May) 75-90. Available: http://doi.org/ 20.1001.1.24237361.2021.6.2.6.0.
Misra, V. K. Sahu, R. S. Ajimsha, A. K. Das, B. Singh. Studies on resistive switching times in NiO thin films grown by pulsed laser deposition. Journal of Physics D: Applied Physics. 50 (2017, Sep) 415106. Available: https://doi.org/10.1088/1361-6463/aa83ce.
Chaoudhary, A. Dewasi, S. Ghosh, R. J. Choudhary, D. M. Phase, T. Ganguli, V. Rastogi, R. N. ereira, A. Sinopoli, B. Aïssa, A. Mitra. X-ray photoelectron spectroscopy and spectroscopic ellipsometry analysis of the p-NiO/n-Si heterostructure system grown by pulsed laser deposition. Thin Solid Films. 743 (2022, Feb) 139077. Available: https://doi.org/10.1016/j.tsf.2021.139077
R. Sahu, Y. H. Lee, T. J. Wu, S. C. Wang, J. L. Huang. Synthesis and electrochromic property improvement of NiO films for device applications. Thin Solid Films. 707 (2020, Aug) 138097. Available: https://doi.org/10.1016/j.tsf.2020.138097.
R. Sahu, T. J. Wu, S. C. Wang, J. L. Huang. Electrochromic behavior of NiO film prepared by e-beam evaporation. Journal of Science: Advanced Materials and Devices. 2 (2017, Jun) 225-32. Available: https://doi.org/10.1016/j.jsamd.2017.05.001.
Manouchehri, J. Zahmatkesh, M. H. Yousefi. Substrate effects on the structural properties of thin films of lead sulfide. Journal of Optoelectronical Nanostructures. 32 (2018, June) 1-18. Available: https://doi.org/20.1001.1.24237361.2018.3.2.1.4
Fakharpour, M. Gholizadeh Arashti, M. T. Musazade Meybodi. Electrical characterization of zig-zag Aluminum thin films using experimental and theoretical methods. Journal of Optoelectronical Nanostructures. 6 (2021, Aug) 25-42. Available: https://doi.org/10.30495/JOPN.2021.27468.1218.
Fakharpour, H. Savaloni. Fabrication of graded helical square tower-like Mn sculptured thin films and investigation of their electrical properties: comparison with perturbation theory. Journal of Theoretical and Applied Physics. 2 (2017, Jun) 109-17. Available: https://doi.org/10.1007/s40094-017-0242-3.
Sarkar, S. K. Pradhan. Silica-based antireflection coating by glancing angle deposition. Surface Engineering. 35 (2019, Nov) 982-5. Available: https://doi.org/10.1080/02670844.2019.1596578.
Potin, H. Boukhalfa, N. Martin. Oblique angle co-deposition of nanocolumnar tungsten thin films with two W sources: Effect of pressure and target current. Materials Chemistry and Physics. 281 (2022, Apr) 125864. Available: https://doi.org/10.1016/j.matchemphys.2022.125864 .
Tyagi, M. Tomar, V. Gupta. Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosensors and Bioelectronics. 52 (2014, Feb) 196-201. Available: https://doi.org/10.1016/j.bios.2013.08.020.
Kannan, A.L. Inamdar, S. M. Pawar, H. S. Kim, H. C. Park, H. Kim, H. Im, Y. S. Chae. Facile route to NiO nanostructured electrode grown by oblique angle deposition technique for supercapacitors. ACS applied materials & interfaces. 8 (2016, Jul) 17220-5. Available: https://doi.org/10.1021/acsami.6b03714.
Horprathum, C. Chananonnawathorn, J. Kaewkhao, N. Sangwaranatee. Nanostructure NiO films grown by oblique angle deposition. Suranaree Journal of Science & Technology. 27 (2020, Jan).
L. Chen, Y. M. Lu, W. S. Hwang. Thickness dependence of electrical and optical properties of sputtered nickel oxide films. Thin Solid Films. 498 (2006, Mar) 266-70. Available: https://doi.org/10.1016/j.tsf.2005.07.124.
V. Kumar, S. Muthulakshmi, A. A. Paulfrit, J. Pandiarajan, N. Jeyakumaran, N. Prithivikumaran. Structural and optical behaviour of thermally evaporated p-type nickel oxide thin film for solar cell applications. Int. J. Chem. Tech. Res. 6 (2014) 5174-7.
Awais, M. Rahman, J. D. MacElroy, N. Coburn, D. Dini, J. G. Vos, D.P. Dowling. Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells. Surface and Coatings Technology. 204 (2010, May) 2729-36. Available: https://doi.org/10.1016/j.surfcoat.2010.02.027.
Obata, K. Komeda, T. Nakao, H. Ueba, C. Tatsuyama. Structural characterization of Si0. 7Ge0. 3 layers grown on Si (001) substrates by molecular beam epitaxy. Journal of applied physics. 81 (1997, Jan) 199-204. Available: https://doi.org/10.1063/1.363841.
Ohring. The Material Science of Thin Solid Films. New York: Academic Press, 2001.
Buckel. Internal stresses. Journal of Vacuum Science and Technology. 6(4) (1969, Jul) 606-9. Available: https://doi.org/10.1116/1.1315702.
Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering. ACS Applied Materials & Interfaces. 24(6) (2014, Dec) 22051-60. Available: https://doi.org/10.1021/am505127g.
Oros, M. Horprathum, A. Wisitsoraat, T. Srichaiyaperk, B. Samransuksamer, S. Limwichean, P. Eiamchai, D. Phokharatkul, N. Nuntawong, C. Chananonnawathorn, V. Patthanasettakul. Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sensors and Actuators B: Chemical. 223 (2016, Feb) 936-45. Available: https://doi.org/10.1016/j.snb.2015.09.104.
Cesaria, A. P. Caricato, M. Martino. Realistic absorption coefficient of ultrathin films. Journal of Optics. 14(10) (2012, Aug) 105701. Available:https://doi.org/ 10.1088/2040-8978/14/10/105701.
Tauc, R. Grigorovici, A. Vancu. Optical properties and electronic structure of amorphous germanium. physica status solidi (b). 15(2) (1966) 627-37. Available: https://doi.org/10.1002/pssb.19660150224.
B. Kunz. Electronic structure of NiO. Journal of Physics C: Solid State Physics. 14(16) (1981, Jun) L455. Available: https://doi.org/10.1088/0022-3719/14/16/001.
Adler, J. Feinleib. Electrical and optical properties of narrow-band materials. Physical Review B. 2(8) (1970, Oct) 3112. Available: https://doi.org/10.1103/PhysRevB.2.3112.
A. Mahmoud, A. A. Akl, H. Kamal, K. Abdel-Hady. Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis. Physica B: Condensed Matter. 311(3-4) (2002, Feb) 366-75. Available: https://doi.org/10.1016/S0921-4526(01)01024-9.
Nandy, U. N. Maiti, C. K. Ghosh, K. K. Chattopadhyay. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. Journal of Physics: Condensed Matter. 21(11) (2009, Feb) 115804. Available: https://doi.org/10.1088/0953-8984/21/11/115804.
M. Reddy, A. S. Reddy, K. S. Lee, P. S. Reddy. Growth and characterization of NiO thin films prepared by dc reactive magnetron sputtering. Solid State Sciences. 13(2) (2011, Feb) 314-20. Available: https://doi.org/10.1016/j.solidstatesciences.2010.11.019.
Deng, B. Yao, Y. F. Li, Y. Xu, J. C. Li, B. H. Li, Z. Z. Zhang, L. G. Zhang, H. F. Zhao, D. Z. Shen. Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode. Journal of luminescence. 134 (2013, Feb) 240-3. Available: https://doi.org/10.1016/j.jlumin.2012.08.039.
A. Al-Ghamdi, W. E. Mahmoud, S. J. Yaghmour, F. M. Al-Marzouki. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. Journal of Alloys and compounds. 486(1-2) (2009, Nov) 9-13. Available: https://doi.org/10.1016/j.jallcom.2009.06.139.
S. Usha, R. Sivakumar, C. Sanjeeviraja. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. Journal of Applied Physics. 114(12) (2013 Sep) 123501. Available: https://doi.org/10.1063/1.4821966.
Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, A. Hosny. Structure, optical and electrochromic properties of NiO thin films. Physica B: Condensed Matter. 405(16) (2010, Aug) 3412-20. Available: https://doi.org/10.1016/j.physb.2010.05.015.
E. Yoldas. Investigations of porous oxides as an antireflective coating for glass surfaces. Applied Optics. 19(9) (1980, May) 1425-9. Available: https://doi.org/ 10.1364/ AO.19.001425.
G. Daza, M. Acosta, R. Castro-Rodriguez, A. Iribarren. Tuning optical properties of ITO films grown by rf sputtering: effects of oblique angle deposition and thermal annealing. Transactions of Nonferrous Metals Society of China. 29(12) (2019, Dec) 2566-76. Available: https://doi.org/10.1016/S1003-6326(19)65164-2.