Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton
Subject Areas : Journal of Optoelectronical NanostructuresMaryam Dehghani 1 , Mohsen Hatami 2 * , Abdolrasoul Gharaati 3
1 - Physics Department, Payame Noor University, Tehran, Iran.
2 - Facualty of Physics, Shiraz University of Technology, Shiraz, Iran.
3 - Physics Department, Payame Noor University, Tehran, Iran.
Keywords: supercontinuum generation, nonlinear plasmonic waveguide, nonlinear Raman scattering, self steepening,
Abstract :
We study the supercontinuum generation in a nonlinear
silica single layer plasmonic waveguide. A major part of
spectral broadening is related to soliton dynamics when an
ultra-short pulse is launched in waveguide with anomalous
GVD. Production of supercontinuum with 10th, 15th and
30th, orders bright solitons by considering all the nonlinear
effects and dispersions i.e., inter-pulse Raman scattering,
self-steepening, self-phase modulation, cross phase
modulation, which indicates the existence of a
supercontinuum propagation about 20 times broadening
than initial width of input spectrum.
Also, we consider the absorption effect of plasmonic
waveguide by calculating propagation length from
propagation constant. The propagation length of plasmonic
is compared with the waveguide length and nonlinear
length. At wavelength 1.22μm, the propagation length is
obtained in the order of waveguide length which means one
can consider the effect of absorption cannot alter the
results. The nonlinear plasmonic waveguides are suitable
for integrated photonics because of subwavelength
confinement of plasmonic waveguides.
[1] A.V. Husakou, J. Herrmann. Supercontinuum generation of higher order solitons by fission in photonic crystal fibers. Phys.Rev. Lett, 87, (2001) 203901. Available: https://doi.org/10.1103/PhysRevLett.87.203901
[2] J. Herrmann et al. Experimental evidence for supercontinuum generation by fission of higher order soliton in photonic fibers. Phys. Rev. Lett, 88, (2002) 173901. Available: https://doi.org/10.1103/PhysRevLett.88.173901
[3] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonics crystal fiber. Rev. Mod. Phys. 78, (2006) 1135–1184. Available: https://doi.org/10.1103/RevModPhys.78.1135
[4] A. M. Zheltikov. supercontinuum generation by ultrashort laser pulses. Phys–Uspekhi. 49, (2006) 605–628.
Available: https://doi.org/10.3367/UFNr.0176.200606d.0623
[5] J. M. Dudley, J. R. Taylor. Ten years of nonlinear optics in photonic crystal fiber. Nature Photonics, 3, (2009) 85–90.
Available: https://doi.org/10.1038/nphoton.2008.285
[6] Q. Lu, C. Zou, D. Chen, P. Zhou, G. Wu. Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Optics Communications, Vol. 319, (2014) 141–146. Available: https://doi.org/10.1016/j.optcom.2013.12.072
[7] Z. Muhammad, J. Alam, S. Aitchison, M. Mojahedi. A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 8, No. 3, (2014) 394–408. Available: https://doi.org/10.1002/lpor.201300168
[8] H. A. Atwater. The Promise of Plasmonics, Scientific American. Vol. 296, No. 4, (2007) 56-63. Available: doi:10.1038/scientificamerican0907-56sp
[9] M. Dehghani, M. Hatami. Raman scattering and self‑steepening in nonlinear plasmonic waveguide pulse equation, Optical and Quantum Electronics Springer, (2020) 52:124. Available: https://doi.org/10.1007/s11082-020-2241-x
[10] D. Rukhlenko, P. Asanka, P. Malin. Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B. (2011).
Available: https://doi.org/10.1103/PhysRevB.84.113409
[11] B. Sharma, R. Frontiera, A. Henry, E. Ringe, R. P. van Duyne. SERS: materials, applications, and the future. 15, (2012) 16–25.
Available: https://doi.org/10.1016/S1369-7021(12)70017-2
[12] H. Zhao, Y. Li, G. Zhang. Study on the performance of bimetallic layer dielectric-loaded surface plasmon polariton waveguides. Journal of optics, (2011) 115501. Available: http://dx.doi.org/10.1088/2040-8978/13/11/115501
[13] R. Yang, M.A.G. Abushagur, Z. Lu. Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot. Opt. Express 16, (2008) 20142–20148. Available: https://doi.org/10.1364/OE.16.020142
[14] H. U. Yang, J. D’Archange, M. L. Sundheimer, E. Tucker, G. D. Boreman. Optical dielectric function of silver. Phys. Rev. 91, (2015) 1–11.
Available: http://dx.doi.org/10.1103/PhysRevB.91.235137
[15] G.P. Agrawal. Nonlinear Fiber Optics. Sixth ed., Academic Press, USA.
(2019). Available: https://doi.org/10.1016/B978-0-12-817042-7.00008-7