ZrO2 Nanoparticles: Optical Properties of Tetragonal Phase and Enhanced Photocatalytic Activity
Subject Areas : Journal of Optoelectronical Nanostructuresazar bagheri 1 * , hana amini 2 , saeed raayati 3
1 - 1Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - 2Department of Chemistry, K. N. Toosi University of Technology, Tehran P. O. Box 16315-1618, Iran
Keywords: Band Gap, ZrO2, Photoluminescence, Tetragonal Phase, Photocatalytic Activity,
Abstract :
Tetragonal zirconia (t-ZrO2) nanoparticles were synthesized from the
zirconium chloride using the co-precipitation technique and characterized by various
measurement techniques. FESEM analysis further revealed spherical shaped NPs and
HR-TEM analysis determined the size of the particles in the range of 14.5 nm. The band
gap energy was estimated 4.0 eV. The UV (350 nm) emission was observed from PL
spectrum. The photocatalytic degradation of the as-prepared ZrO2 nanoparticles were
studied under UV light irradiation using ciprofloxacin (CIP) as a model organic
pollutant. Results showed that 50% degradation were achieved within 15 min.
REFERENCES [1] (a) J. Si, S. B. Desu, C. Y. J. Tsai, Metal-organic chemical vapor deposition of ZrO2 films using Zr(thd)4 as precursors Mater. Res. 9 (7) (1994)1721.
[2] Sue-min Chang , Ruey-an Doong, Interband transition of sol-gel-derived ZrO2 films under different calcination conditions, Chemistry of Materials, 19(2007)4804-4810 [3] C. Wang, Y. Li, B. Cheng, Fabrication of porous ZrO2 hollow sphere and its adsorption performance to Congo red in waterCeram. Intr. 40 (2014) 10847-10856. Metal-organic chemical vapor deposition of ZrO2 films using Zr(thd)4 as precursors
[4] F. Davar, M. R. Loghman-Estarki, Synthesis and optical properties of pure monoclinic zirconia nanosheets by a new precursor, Ceram. Int. 40 (2014) 8427–8433.
[5] L. Renuka, K.S. Anantharaju, S.C. Sharma, H. Nagabhushana, Y.S. Vidya, H.P.Nagaswarupa, S.C. Prashantha, A comparative study on the structural, optical,electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different Routes, J. Alloy. Compound. 695 (2017) 382-395
[6] T.Razegh; V. Setoodeh; S. Pilban Jahromi Influence of particle size on magnetic behavior of nickel oxide nanoparticles,J.Optoelect.Nanostruct. 2(2017) 11-18
[7] H. Zheng, K. Liu, H. Cao, X. Zhang, L-Lysine-Assisted Synthesis of ZrO2 Nanocrystals and Their Application in Photocatalysis, J. Phys. Chem. C. 113 (2009) 18259–18263.
[8] D. Vollath, K.E. Sickafus, Synthesis of nanosized ceramic oxide powders by microwave plasma reactions, Nanostruct. Mater. 1 (1992) 427-437.
[9] W. S. Lee, S. W. Kim, B. H. Koo, D. S. Bae, Synthesis and microstructure of Y2O3-doped ZrO2–CeO2 composite nanoparticles by hydrothermal process, Colloids and Surfaces A: Physicochem. Eng. Aspects 313–314 (2008) 100–104
[10] N.L. Wu, T.F. Wu, Enhanced Phase Stability for Tetragonal Zirconia in Precipitation Synthesis, J. Am. Ceram. Soc. 83 (2000) 3225-3227.
[11] Sh. Ahmad Khan, Zh. Fu, S. Shakir Rehman, Muhammad Asif,WeiminWang, Hao Wang, Study of template-free synthesis
ZrO2 Nanoparticles: Optical Properties of Tetragonal Phase and Enhanced Photocatalitic … * 23
hierarchical m-ZrO2 nanorods by hydrothermal method, Powder Technology 256 (2014) 71–74.
[12] C.Y. Tai, B.Y. Hsiao, characterization of zirconia powder synthesized via reversemicro emulsion precipitation, Chem. Eng. Commun. 192 (2005) 1525-1540.
[13] T. Razpotnik, J. Macek, Synthesis of nickel oxide/zirconia powders via a modified Pechini method, J. Eur. Ceram. Soc. 27 (2007) 1405-1410.
[14] Cihangir Duran, KimiyasuSato, YujiHotta, HasanGِçmez, Koji Watari, Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders, Ceram. Int, 41 (2015) 5588–5593. [15] M. Gateshki, V. Petkov, G. Williams, S.K. Pradhan, Y. Ren, Atomic- scale structure of nanocrystalline ZrO2 prepared by high-energy ball milling Phys. Rev. B 71 (2005) 224107.
[16] Cullity, B. D. Elements of X-ray Diffraction; Addison-Wesley: Reading, MA, 1978
[17] K.A. Singh, L.C.Pathak, S.K.Roy, Effect of citric acid on the synthesis of nanocrystalline yttria stabilized zirconia powders by nitrate-citrate process, Ceram. Int. 33(2007)1463–1468.
[18] A. P. Naumenko, N. I. Berezovska, M. M. Biliyand, O.V. Shevchenko, VibrationalAnalysis and Raman Spectra of Tetragonal Zirconia, J. Mater. Sci. Lett. 9 (2008) 121–125
[19] G. Ehrhart, M. Bouazaoui, B. Capoen, V. Ferreiro, R. Mahiou, O. Robbe, S. Turrell, Effects of rare-earth concentration and heat-treatment on the structural and luminescence properties of europium-doped zirconia sol–gel planar waveguides Opt.Mater. 29 (2007)1723-1730
[20] K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, J. Grabis, W. Lojkowski, Intrinsic defect related luminescence in ZrO2, J. Lumin. 131 (2011) 2058-2062.
[21] Sachin Kumar, Snehasis Bhunia, Jitendra Singh, Animesh K. Ojha, Absence of room temperature ferromagnetism in Fe stabilized ZrO2 nanostructures and effect of Fe doping on its structural, optical and luminescence properties, J. Alloy. Compound. 649 (2015) 348 - 356
[22] Christoph Reimann, Thomas Bredow, Adsorption of nitrogen and ammonia at zirconia surfaces, J. Mol. Struct. (THEOCHEM) 903 (2009) 89-99
24 * Journal of Optoelectronical Nanostructures Spring 2020 / Vol. 5, No. 2
[23] J. Liang, Z. Deng, X. Jiang, F. Li, and Y. Li, Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation, Inorg. Chem. 41 (2002) 3602–3604.
[24] Reena Dwivedi, Anjali Maurya, Akrati Verma, R. Prasad, K.S. Bartwal, Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles, J. Alloy. Compound. 509 (2011) 6848–6851.
[25] M. Angeles-Rosas, M. A. Camacho-Lَpez, E. Ruiz-Trejo, Structure, conductivity and luminescence of 8 mol% Scandia doped zirconia prepared by sol–gel, Solid State Ion,181(2010)1349–1354.