Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode
Subject Areas : Journal of Optoelectronical NanostructuresAli Moftakharzadeh 1 * , Behnaz Afkhami Aghda 2 , Mehdi Hosseini 3
1 - Department of Electrical Engineering, Yazd University, Yazd, Iran, Postal
Code 89195-741.
2 - Pishgaman Asr Ertebatat Company, Yazd, Iran.
3 - Department of physics, Shiraz University of Technology, Shiraz, Iran,
Postal Code 313-71555.
Keywords: Graphene, Superconductor, Noise Equivalent Power (NEP), Optical Sensors,
Abstract :
In this paper, the noise equivalent power (NEP) of an optical sensor based on
graphene-superconductor junctions in the constant current mode of operation has been
calculated. Furthermore, the necessary investigations to optimize the device noise with
respect to various parameters such as the operating temperature, magnetic field, device
resistance, voltage and current bias have been presented. By simultaneously solving the
free energy and charge carrier density equations of graphene at low temperature, the
specific heat, thermal interaction of electron-phonon and current responsivity of the
sensor have been calculated. Using these parameters, the noise equivalent power of the
device has been obtained. The results show that the behavior of device NEP by
increasing the magnetic field at a constant temperature is at first ascending and then
descending. The NEP value for different temperatures, up to T=80K, has an increasing
behavior and then by further increasing the temperature, the NEP will show decreasing
behavior which is also dependent on the value of the magnetic field. The NEP value is
directly related to the device voltage and current values, therefore by increasing the
voltage and current, the NEP will increase. Our investigations show that at the constant
current bias mode of operation, the final device NEP is independent of the device
resistance.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science. [Online]. 306(5696) (2004, Oct.) 666-669.
Available: http://science.sciencemag.org/content/306/5696/666
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature. [Online]. 438 (2005, Nov.) 197-200. Available: https://www.nature.com/articles/nature04233
[3] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum Hall Effect and Berry's phase in graphene. Nature. [Online]. 438 (2005, Nov.) 201-204. Available: https://www.nature.com/articles/nature04235
[4] P. R. Wallace. The band theory of graphite. Phys. Rev. 71(9) (1947, May.) 622-634.
[5] J. C. Slonczewski, and P. R. Weiss. Band structure of graphite. Phys. Rev. 109(2) (1958, Jan.) 272-279.
[6] G. W. Semenoff. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. [Online]. 53(26) (1984, Dec.) 2449-2452.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.53.2449
[7] V. P. Gusynin, and S. G. Sharapov. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. [Online]. 95(14) (2005, Sep.) 146801.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.146801
[8] N. M. R. Peres, A. H. Castro Neto, and F. Guinea. Conductance quantization in mesoscopic graphene. Phys. Rev. B. [Online]. 73(19) (2006, May.) 195411. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.195411
[9] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. [Online]. 96(24) (2006, Jun.) 246802.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.246802
[10] Y. Zhang, J. P. Small, M. E. Amori, and P. Kim. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. [Online]. 94(17) (2005, May.) 176803.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.176803
[11] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunneling and the Klein paradox in graphene. Nature physics. [Online]. 2(9) (2006, Aug.) 620-625. Available: https://www.nature.com/articles/nphys384
[12] C. W. J. Beenaker. Specular Andreev Reflection in Graphene. Phys. Rev. Lett. [Online]. 97 (2006, Aug.) 067007.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.067007
[13] A. F. Volkov, P. H. C. Magnée, B. J. Van Wees, and T. M. Klapwijk. Proximity and Josephson effects in superconductor-two-dimensional electron gas planar junctions. Physica C: Superconductivity. [Online]. 242(3) (1995, Feb.) 261-266. Available:https://www.sciencedirect.com/science/article/abs/pii/0921453494024294
[14] M. Titov, and C. W. Beenakker. Josephson effect in ballistic graphene. Phys. Rev. B. [Online]. 74(4) (2006, Jul.) 041401.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.041401
[15] P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials. [Online]. 4 (2005, Dec.) 86-92. Available: https://www.nature.com/articles/nmat1276
[16] J. Lou, Y. Wang, and L. Tong. Microfiber optical sensors: A review. Sensors. [Online]. 14(4) (2014, Mar.) 5823-5844.
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029688/
[17] A., Dinoi, A. Donateo, F. Belosi, M. Conte, and D. Contini. "Comparison of atmospheric particle concentration measurements using different optical detectors: Potentiality and limits for air quality applications." Measurement 106 (2017): 274-282.
[18] R. J. Keyes. Optical and infrared detector. 2nd ed. Springer Science & Business Media (2013), 101-147.
[19] F. Alves, D. Grbovic, and G. Karunasiri, February. MEMS THz sensors using metasurface structures. “In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI.” International Society for Optics and Photonics. 10531 (2018) 1053111.
Available: http://iopscience.iop.org/article/10.1088/0953-2048/9/10/001
[20] Z. Chen, G., Hefferman, and T. Wei,. “A low bandwidth DFB laser-based interrogator for terahertz-range fiber Bragg grating sensors.” IEEE Photonics Technology Letters, (2017), 29(4), pp.365-368.
[21] M. Hosseini, A. Moftakharzadeh, A. Kokabi, M. A. Vesaghi, H. Kinder, and M. Fardmanesh. Characterization of a transition-edge bolometer made of YBCO thin films prepared by nonfluorine metal–organic deposition. IEEE Trans. on Appl. Supercond. [Online]. 21(6) (2011, Dec.) 3587-3591.
Available: https://ieeexplore.ieee.org/document/6029287/
[22] M. Hosseini, A. Kokabi, A. Moftakharzadeh, M. A. Vesaghi, and M. Fardmanesh. Effect of substrate thickness on responsivity of free-membrane bolometric detectors. IEEE Sensors Journal. [Online]. 11(12) (2011, May.) 3283-3287.
Available: https://ieeexplore.ieee.org/abstract/document/5772900/
[23] M. Hosseini. Tailoring the terahertz absorption in the quantum wells. Optik-International Journal for Light and Electron Optics. [Online]. 127(10) (2016, May.) 4554-4558.
Available: https://www.sciencedirect.com/science/article/pii/S0030402616002072
[24] J. Fernández-Rossier, J. J. Palacios, and L. Brey. Electronic structure of gated graphene and graphene ribbons. Phys. Rev. B. [Online]. 75 (2007, May.) 205441. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.205441
[25] M. S. Azadeh, A. Kokabi, M. Hosseini, and M. Fardmanesh. Tunable bandgap opening in the proposed structure of silicon-doped graphene. Micro & Nano Lett. [Online]. 6(8) (2011, Aug.) 582-585.
Available: https://ieeexplore.ieee.org/document/6012991/
[26] M. B. Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nature Physics. [Online]. 12(4) (2016, Dec.) 318-322. Available: https://www.nature.com/articles/nphys3592
[27] D. Golubev and L. Kuzmin. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulatorsuperconductor tunnel junction. Journal of Applied Physics. [Online]. 89(11) (2001, Jun.) 6464-6472.
Available: https://aip.scitation.org/doi/abs/10.1063/1.1351002
[28] B. A. Aghda, A. Moftakharzadeh, and M. Hosseini. Noise Equivalent Power of Graphene–Superconductor-Based Optical Sensor. Fluctuation and Noise Letters. [Online]. 16(01) (2017, Mar.) 1750006.
Available: https://www.worldscientific.com/doi/abs/10.1142/S0219477517500067
[29] B. V. Duppen and F. M. Peeters. Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field. Phys. Rev. B. [Online]. 88(24) (2013, Dec.) 245429.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.245429