Analytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL
Subject Areas : Journal of Optoelectronical NanostructuresMehdi Riahinasab 1 * , Elham Darabi 2
1 - Department of Electrical Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran
2 - Plasma physics research center, Science and Research Branch, Islamic Azad
University, Tehran, Iran.
Keywords: Modulation Transfer Function, Tunnel Injection Quantum Dot (TIQD), Vertical Cavity Surface Emitting Laser (VCSEL),
Abstract :
The frequency behavior of the tunnel injection quantum dot vertical cavity
surface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumerical
method on the modulation transfer function. The function is based on the
rate equations and is decomposed into components related to different energy levels
inside the quantum dot and injection well. In this way, the effect of the tunneling
process on the improvement of the laser frequency response is determined. Generally,
the components of the modulation transfer function in the wetting layer and the excited
state limit the total laser bandwidth. Of course, the component associated with the
tunneling process increases overall system bandwidth. It is shown that for currents
above threshold, the carrier density at the excited state in TIQD has a slight slope,
unlike the conventional quantum dot (CQD). It will improve the frequency response of
the tunnel injection structure. It can be attributed to the difference in Pauli blocking
factor values at the excited state and the ground state in the two structures.
[1] N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A.
Egorov, A. E. Zhukov, M. V Maximov, P. S. Kopev, and Z. Alferov. Gain and
differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl.
Phys. Lett. 69(9) (1996) 1226–1228.
Available: https://aip.scitation.org/doi/10.1063/1.117419
[2] D. Klotzkin, K. Kamath, K. Vineberg, P. Bhattacharya, R. Murty, and J. Laskar.
Enhanced modulation bandwidth (20 GHz) of In/sub 0.4/Ga/sub 0.6/As-GaAs selforganized
quantum-dot lasers at cryogenic temperatures: role of carrier
relaxation and differential gain. IEEE Photonics Technol. Lett. 10(7) (1998, July)
932–934. Available: https://ieeexplore.ieee.org/document/681274
[3] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester. Extremely low roomtemperature
threshold current density diode lasers using InAs dots in
In0.15Ga0.85As quantum well. Electron. Lett. 35 (1999) 1163–1165.
Available: https://pdfs.semanticscholar.org/29f5
[4] R. P. Sarzala. Modeling of the threshold operation of 1.3-/spl mu/m GaAs-based
oxide-confined (InGa)As-GaAs quantum-dot vertical-cavity surface-emitting
lasers. IEEE J. Quantum Electron. 40(6) (2004) 629–639.
Available: https://ieeexplore.ieee.org/document/1303776
[5] M. V Maksimov, N. Y. Gordeev, S. V Zaitsev, P. S. Kop’ev, I. V Kochnev, N. N.
Ledentsov, A. V Lunev, S. S. Ruvimov, A. V Sakharov, A. F. Tsatsul’nikov, Y.
M. Shernyakov, Z. I. Alferov, and D. Bimberg. Quantum dot injection heterolaser
with ultrahigh thermal stability of the threshold current up to 50 °C.
Semiconductors. 31(2) (1997, Feb.) 124–126.
Available: https://cip.cornell.edu/handle/cul.maik.sc/1214589781
[6] O. B. Shchekin and D. G. Deppe. 1.3m InAs quantum-dot laser with K from 0 to
80C. Appl. Phys. Lett. 80 (2002) 3277–3279.
[7] D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov,
A. E. Zhukov, A. R. Kovsh, M. V Maximov, Y. M. Shernyakov, and B. V
Volovik. Quantum dot lasers: Breakthrough in optoelectronics. Thin Solid Films.
367 (2000) 235–249. Available: https://www.sciencedirect.com/science/article/pii/
[8] M. H. Yavari and V. Ahmadi. Effects of Carrier Relaxation and Homogeneous
Broadening on Dynamic and Modulation Behavior of Self-Assembled Quantum-
Dot Laser. IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1153–1157.
Available: https://ieeexplore.ieee.org/document/5735155/
[9] J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya. Observation of phonon
bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86(21) (2001,
May) 4930–4933. Available: https://www.ncbi.nlm.nih.gov/pubmed/11384384
[10] A. Fiore and A. Markus. Differential Gain and Gain Compression in Quantum-
Dot Lasers. IEEE J. Quantum Electron. 43(4) (2007, Mar.) 287–294.
Available: https://ieeexplore.ieee.org/document/4099479/
[11] C. Wang, F. Grillot, and J. Even. Impacts of Wetting Layer and Excited State on
the Modulation Response of Quantum-Dot Lasers. IEEE J. Quantum Electron.
48(9) (2012, Sep.) 1144–1150.
Available: http:// ieeexplore.ieee.org/document/6220843/
[12] P. Bhattacharya, J. Singh, H. Yoon, Xiangkun Zhang, A. Gutierrez-Aitken, and
Yeeloy Lam. Tunneling injection lasers: a new class of lasers with reduced hot
carrier effects. IEEE J. Quantum Electron. 32(9) (1996) 1620–1629.
Available: https://ieeexplore.ieee.org/document/535367/
[13] X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R.
Bhat. 0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz
intrinsic modulation bandwidth. IEEE J. Sel. Top. Quantum Electron. 3(2) (1997,
Apr.) 309–314. Available: http://irepose.iitm.ac.in:8080/jspui/handle/11717/4416
[14] H. Yoon, A. L. Gutierrez-Aitken, R. Jambunathan, J. Singh, and P. K.
Bhattacharya. A ‘cold’ InP-based tunneling injection laser with greatly reduced
Auger recombination and temperature dependence. IEEE Photonics Technol. Lett.
7(9) (1995, Sep.) 974–976.
Available: https://ieeexplore.ieee.org/document/414673/
[15] P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Zong-Kwei Wu, J. Urayama,
Kyoungsik Kim, , and T. B. Norris. Carrier dynamics and high-speed modulation
properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum
Electron. 39(8) (2003) 952–962.
Available: https://ieeexplore.ieee.org/document/1211140/
[16] G. Cerulo, L. Nevou, V. Liverini, F. Castellano, and J. Faist. Tuning the dynamic
properties of electrons between a quantum well and quantum dots. J. Appl. Phys.,
112(4) (2012) 43702.
Available: https://aip.scitation.org/doi/abs/10.1063/1.4746789
[17] S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya. High
Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 μm Tunnel Injection
Laser. IEEE Journal of Quantum Electronics. 50(1) (2014) 7-14.
Available: https://ieeexplore.ieee.org/document/6665003/
[18] H. Abbaspour, V. Ahmadi, and M. H. Yavari. Analysis of QD VCSEL Dynamic
Characteristics Considering Homogeneous and Inhomogeneous Broadening.
IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1327–1333.
Available: https://ieeexplore.ieee.org/document/5735154/
[19] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E.
Homeyer, and S. Loualiche. Spectral analysis of 1.55 μmInAs-InP(113)B
quantum-dot lasers based on a multipopulation rate equations model. IEEE J.
Quantum Electron. 45(7) (2009, July) 872–878.
Available: https://hal.archives-ouvertes.fr/hal-00501878/document
[20] H. Jiang and J. Singh. Strain distribution and electronic spectra of InAs/GaAs selfassembled
dots: An eight-band study. Phys. Rev. B. 56 (1997) 4696–4701.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.56.4696
[21] C. Tong, D. Xu, and S. F. Yoon. Carrier relaxation and modulation response of
1.3-μmInAs-GaAs quantum dot lasers. J. Lightwave Technol. 27(23) (2009, Dec.)
5442–5450. Available: https://ieeexplore.ieee.org/document/5208395/
[22] T. W. Berg, J. Mork. Quantum dot amplifiers with high output power and low
noise. Applied Physics Letters. 82(18) (2003, May) 3083-3085.
Available: https://aip.scitation.org/doi/10.1063/1.1571226.