The Relativistic Effects on the Violation of the Bell's Inequality for Three Qubit W State
Subject Areas : Journal of Optoelectronical NanostructuresMohsen Aghaee 1 * , MohammadVahid Takook 2 , Ardeshir Rabeie 3
1 - Razi University, Kermanshah, Iran
2 - Razi University, Kermanshah, Iran
3 - Razi University, Kermanshah, Iran
Keywords: Spin, Entanglement, W state, Qubit, Bell's inequality,
Abstract :
In this paper we are going to calculate the correlation function and Bell's
inequality for three qubit W state under the Lorentz transformations. This survey is based
on the introduction of two different expressions of spin observable were presented by
Lee-Young and Kim-Son.
[1] M. Czachor, Nonlocal looking equations can make nonlinear quantum dynamics
local. Phys. Rev. A (1997) 55-72.
[2] W.T. Kim, E.J. Son, One and two spin 1/2 particle systems under the Lorentz
transformations. Phys. Rev. A 71, (2005) 014102.
[3] A. Peres, D.R. Terno, Two roles of relativistic spin operators. Rev. Mod. Phys. (2004)
76-93.
[4] D.Ahn, H.J. Lee, Y.H. Moon, S.W. Hwang, Lorentz invariance of entanglement
classes in multipartite systems. Phys. Rev. A 67, (2003) 012103.
[5] P.M. Alsing and G.J. Milburn, Speeding up entanglement degradation. Quant. Inf.
Comp. (2002) 230402.
[6] H. Terashima, M. Ueda, Spin decoherence by spacetime curvature. Quantum Inf.
Comput. 3, (2003) 224.
[7] S. Moradi, Maximally entangled states and Bell's inequality in relativistic regime.
Phys. Rev. A 77, (2008) 024101.
[8] J. Pachos, E. Solano, Entanglement entropy; helicity versus spin. Quant. Inf. Comput.
3, (2003) 115.
[9] N.D. Mermin, Extreme quantum entanglement in a superposition of macroscopically
distinct states. Phys. Rev. Lett. 65, (1990) 1838.
[10] S. J. Van Enk, T. Rudolph, Local vs. joint measurements for the entanglement of
assistance. Quant. Inf. Comput. 3, (2003) 423.
[11] M. Czachor, M. Wilczewski, Two-spinors, oscillator algebras, and qubits; aspects
of manifestly covariant approach to relativistic quantum information. Phys. Rev.
A68, (2003) 010302.
[12] B. Nasr Esfahani, M. Aghaee, Tripartite entanglements seen from a relativistically
moving frame. Int. J. Quant. Inf. 09, (2011) 1255.
[13] S. Moradi and M. Aghaee, Frame independent nonlocality for three qubit state. Int.
J. Theor. Phys. 49, (2010) 615.
[14] P. M. Alsing, G. J. Milburn, Teleportation with a uniformly accelerated partner.
Phys. Rev. Lett. 91, (2003) 180404.
[15] B. Nasr Esfahani, M. Aghaee, Spin fidelity for three qubit Greenberger-Horne-Zeilinger and W states under Lorentz transformations. Int J. Theor. Phys. 5, (2011) 1395.
[16] A. Peres, D. R. Terno, Quantum information and relativity theory. Rev. Mod. Phys. (2004) 76-93.
[17] C. Soo, C. C. Y. Lin, Quantum helicity entropy of moving bodies. Int. J. Quant. Inf. 2, (2004) 183.
[18] A. J. Bergou, R.M. Gingrich, C. Adami, Maximum entanglement and its proper measure. Phys. Rev.A 68, (2003) 042102.
[19] P. M. Alsing, G. J. Milburn, Teleportation in a non-inertial frame. J. Optics. B6, (2004) 834.
[20] Y. Shi, Entanglement in relativistic quantum field theory. Phys. Rev. D70, (2004)
105001.
[21] W. T. Kim and E. J. Son, Observation of gravitational waves from a binary black hole merger. Phys. Rev. A71, (2005) 014102.
[22] M. Czachor, Relativistic spin operator and Lorentz transformation of the spin state of a massive Dirac particle. Phys. Rev. Lett. 94, (2005) 078901.
[23] I. FuentesSchuller, R. B. Mann, Alice falls into a black hole; entanglement in non-inertial frames. Phys. Rev. Lett. 95, (2005) 120404.
[24] P. Caban, J. Rembielinski, Unstable particles as open quantum systems. Phys. Rev. A72, (2005) 012103.
[25] B. Nasr Esfahani, M. Aghaee, Relativistic entanglement for spins and momenta of a massive three-particle system. Quant. Inf. Process. 11, (2011) 529.
[26] P. Kok, S. L. Braunstein, Diversities in quantum computation and quantum information. Int. J. Quant. Inf. 4, (2006) 119.
[27] J. L. Ball, I. FuentesSchuller, Entanglement in an expanding space-time. Phys. Lett. A359, (2006) 550.
[28] L. Lamata, M. A. MartinDelgado, E. Solano, Relativity and Lorentz invariance of entanglement distillability. Phys. Rev. Lett. 97, (2006) 250502.
[29] L. Lamata, J. León, E. Solano, Dynamics of momentum entanglement in lowest-order QED. Phys. Rev. A73, (2006) 012335.
[30] T. F. Jordan, A. Shaji, E. C. G. Sudarshan, Einstein-Podolsky-Rosen correlations of Dirac particles; quantum field theory approach. Phys. Rev. A73, (2006) 032104.
[31] P. M. Alsing, I. FuentesSchuller, R.B. Mann, T.E. Tessier, Entanglement of Dirac fields in noninertial frames. Phys. Rev. A74, (2006) 032326.
[32] Y. Shi, Charmed hadron spectroscopy from focus. Phys. Lett. B641, (2006) 486.
[33] S. He, P. Kok, S. L. Braunstein, Quantum helicity entropy of moving bodies. quant-ph (2006) 0702028.
[34] S. Weinberg, The quantum theory of fields. Cambridge university press, Cambridge, (1995).
[35] P. Caban, J. Rembielinski, Quantum state of a free spin-1/2 particle and the inextricable dependence of spin and momentum under Lorentz transformations. Phys. Rev. A74, (2006) 042103.
[36] S. He, Entanglement entropy; helicity versus spin. quant-ph, (2007) 0608061.
[37] Y. Ling, S. He, W. Qiu, H. Zhang, Quantum entanglement and teleportation in higher dimensional black hole spacetimes. J. Phys. A40, (2007) 9025.
[38] G. Adesso, External entanglement and mixedness in continuous variable systems. quant-ph (2002) 0701074.
[39] R.M. Gingrich, C. Adami, Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, (2002) 270402.
[40] A. Peres, Relativistic spin operator and Lorentz transformation of spin state of a massive Dirac particle. Phys. Rev. Lett. 88, (2002) 230402.
[41] A. Peres, D.R Terno. Quantum information and special relativity. Mod. Opt. 50, (2003) 1165.
[42] V. Scarani, N. Gisin, Spectral decomposition of Bell’s operators for qubits. J. Phys A, 34, (2001) 6043.