جاذبهـای آشوبناک و متناوب در یک مدل شبکه عصبی مصنوعی پنج بعدی
محورهای موضوعی : هندسه
1 - گروه ریاضی، دانشگاه پیام نور، تهران، ایران
کلید واژه: transient chaos, Chaos, Lyapunov spectrum, hyperchaos, period-doubling bifurcation,
چکیده مقاله :
در این مقاله، دینامیک یک مدل جدید از شبکههای عصبی هاپفیلد مبتنی بر 5 نورون ارائه و بررسی شده است. در ضرائب سیناپسی این مدل، دو پارامتر تعریف شده که با تغییر آنها، رفتارهای دینامیکی بسیار غنی، از جمله جاذب شبهمتناوب (3-چنبره)، آشوب، آشوب گذرا، ابرآشوب، انشعاب دو برابر سازی دوره تناوب منتهی به آشوب و جاذبهای همزیست مشاهده خواهند شد. این مدل تقریبا اکثر پدیدههای دینامیکی مطرح را در بر خواهد گرفت. به طور خاص، ما پدیده انشعاب دو برابر سازی دوره تناوب منتهی به آشوب را مشاهده میکنیم که در کارهای قبلی به ندرت در سیستمهای خودگردان پنج بعدی، بخصوص سیستم هاپفیلد گزارش شدهاند. با تغییر پارامتر a در یک بازه بسیار کوچک، فرآیند تکامل سیستم از چرخه حدی آغاز میشود و پس از عبور از یک سری جاذبهای متناوب، آشوبناک میشود. رفتارهای پیچیده دینامیکی سیستم با استفاده از طیف نمای لیاپونوف، نمودار انشعاب و مقاطع مختلف از فضای فاز بررسی میشوند.
In this article, the dynamics of a new model of Hopfield neural networks based on 5 neurons is presented and analyzed. In the synaptic coefficients of this model, two parameters are defined which, by changing them, very rich dynamic behaviors, including quasi-periodic attractors (3-torus), chaos, transient chaos, hyperchaos, period-doubling bifurcation route to chaos and coexistence attractors will be observed. This model will include almost most of the dynamic phenomena mentioned. In particular, we observe the period-doubling bifurcation leading to chaos, which has rarely been reported in previous works in five-dimensional autonomous systems, especially the Hopfield system. By changing the parameter a in a very small interval, the evolution process of the system starts from the limit cycle and after passing through a series of periodic attractors, it becomes chaotic. Complex dynamic behaviors of the system are investigated using the Lyapunov spectrum, bifurcation diagram and different sections of the phase space.
[1] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America, 81, 3088-3092 (1984)
[2] H. Qiu, X. Chen, W. Liu, G. Zhou, Y. Wang, J. Lai, A fast l1-solver and its applications to robust face recognition. Journal of Industrial and Management Optimization, 8,163–178 (2012)
[3] Y. J. Wang, G. L. Zhou, L. Caccetta, W. Q. Liu, An alternative Lagrange-dual based algorithm for sparse signal reconstruction. IEEE Trans Signal Process, 59,1895–1901 (2011)
[4] X. S. Yang, Q. Yuan Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing, 69, 232–241 (2005)
[5] A. L. Hodgkin, A. F. Huxley, A quantitative description ofmembrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544 (1952)
[6] E. M. Izhikevich, Which model to use for cortical spiking neurons. IEEE Trans Neuron Netw, 15, 1063–1070 (2004)
[7] E. M. Izhikevich, Systems in neuroscience. MIT Press, Cambridge (2007)
[8] C. Morris, H. Leca, Voltage oscillations in the barnacle giant muscle fiber. The Journal of Physiology, 35, 193–213 (1981)
[9] U. Güçlü, A. J. Gerven, Modeling the dynamics of human brain activity with recurrent neural networks. Frontiers in Computational Neuroscience, , 11(7), 1–14 (2017)
[10] P. Zheng, W. Tang, J. Zang , Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing, 73, 2280–2285 (2010)
[11] Q. Li, S. Tang, H. Zeng, T. Zhou, On hyperchaos in a small memristive neural network. Nonlinear Dynamics, 78, 1087–1099 (2014)
[12] M. F. Danca, L. Kuznets, Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals, 103, 144–150 (2017)
[13] B. Bao, H, Qian, Q. Xu, M. Chen, J. Wang, Y. Yu, Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Frontiers in Computational Neuroscience, 11(81), 1–14 (2017)
[14] B. Bao, H. Qian, J. Wang, Q. Xu, M. Chen, H, Wu, Y. Yu, Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dynamic, https://doi.org/10.1007/s11071-017-3808-3 (2017)
[15] Z. T. Njitacke, J. Kengne, H. B. Fotsin, A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-018-0435-x (2018)
[16] Z. T. Njitacke, J. Kengne, Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. International Journal of Electronics and Communications, 93, 242–252 (2018)
[17] H. M. Mohammadinejad, M. H. Moslehi, Continuous attractors in Hopfield neural networks. International Journal of Differential Equations and Applications, 13(2), 61-70, (2014)
[18] G. J. Kitio, C. Ainamon, K. Rajagopal, L. K. Kengne, S. T. Kingni, J. R. M. Pone, Four-Scroll Hyperchaotic Attractor in a Five-Dimensional
Memristive Wien Bridge Oscillator: Analysis and Digital Electronic Implementation. Mathematical Problems in Engineering, https://doi.org/10.1155/2021/4820771, (2021)
[19] F. Yu, L. Liu, S. Qian, L. Li,Y. Huang, C. Shi, S. Cai, X. Wu, S. Du, Q. Wan, Chaos-Based Application of a Novel Multistable 5D Memristive
Hyperchaotic System with Coexisting Multiple Attractors. Complexity, https://doi.org/10.1155/2020/8034196, (2022)
[20] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).
[21] V. Ivancevic, T. Ivancevic, High-Dimensional Chaotic and Attractor Systems. Springer, Berlin (2006)
[22] H. Haken, At least one Lyapunov exponent vanishes if the trajectory of an attractor does
[23] D. Ruelle, Strange attractors. The Mathematical Intelligencer, 2, 126-137 (1980).
[24] M. KLEIN, G. BAIER, HIERARCHIES OF DYNAMICAL SYSTEMS. A Chaotic Hierarchy, 1-23 (1991)
[25] J. L. Kaplan and J. A. Yorke, Chaotic behavior of multidimentional differential equations, in Functional Differential Equations arid Approximation of Fixed Points. Lecture Notes in Mathematics, 730, 228-327 Springer, New York (1978).
[26] D. J. Evans, E. G. D. Cohen, D. J. Searles, F. Bonetto, Note on the Kaplan Yorke Dimension and Linear Transport Coefficients. Journal of Statistical Physics, 101, 17–34 (2000)
[27] M. Klein und G. Baier, Hierarchies of dynamical systems, in: A Chaotic Hierarchy, edited by G. Baier und M. Klein, Singapore: World Scientific, 1-23 (1991).
[28] G. Perez and HA. Cerdeira, Extracting messages masked by chaos, Physical Review Letters, 74, 1970-1973 (1995)
[29] L. Pecora, Hyperchaos harnessed. Physics World, 9, 17-17 (1996).
[30] J. P. Goedgebuer, L. Larger, H. Porte. Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Physical Review Letters, 80, 2249–2252, (1998).
[31] C. Li, X. Liao, K. Wong, Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons & Fractals, 23, 183–93 (2005).
[32] T. Gao, Z. Chen. Image encryption based on a new total shuffling algorithm. Chaos, Solitons & Fractals, 38, 213–220 (2008).
[33] A. N. Pisarchik, U. Feudel, Control of multistability, Physics Reports, 540(4), 167-218 (2014).
[34] F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Experimental Evidence of Subharmonic Bifurcations, Multistability, and Turbulence in a Q-Switched Gas Laser. Physical Review Letters, 49, 1217 (1982).
[35] J. C. Sprott, X. Wang, and G. Chen, Coexistence of point, periodic and
strange attractors, International Journal of Bifurcation and Chaos, 23(5), 1350093 (2013).
[36] J. Kengne , Z. T. Njitacke , H. B. Fotsin , Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dynamics, 83, 751-765 (2016).
[37] G. Wang, F. Yuan, G. Chen, Y. Zhang, Coexisting multiple attractors and riddled basins of a memristive system. Chaos, 28, 013125 (2018)