ارزیابی ایمنی سلولی و هومورال در طی واکسیناسیون سینوفارم
محورهای موضوعی : ایمنی شناسی
کلید واژه: ویروس کرونا, کووید-19, لنفوسیت ها, واکسن, سینوفارم,
چکیده مقاله :
سابقه و هدف: در این تحقیق، رویدادهای ایمونولوژیک رخ داده در طول واکسیناسیون با COVID-19 و همچنین مکانیسم های سلولی و مولکولی آن مورد مطالعه قرار گرفت. هدف از این مطالعه بررسی ایمنی سلولی و ژن های فعال کننده لنفوسیت و همچنین شناسایی تغییرات نشانگرهای سطح لنفوسیت Th در طول دوره واکسیناسیون COVID-19 با واکسن سینوفارم است. مواد و روش ها: در این مطالعه از 60 فرد سالم که در گذشته به کرونا مبتلا نشده بودند، خون گرفته شد و تغییرات CD3 و CD4 در طول واکسیناسیون اندازه گیری شد. همچنین سطوح آنتی بادی IgM و IgG ارزیابی و میزان بیان ژن های IFN-α و IFN-γ با روش Real time QPCR اندازه گیری شد. نتایج: پس از تزریق اولین دوز واکسن سینوفارم، IgM و IgG به ترتیب در 65 درصد و 60 درصد افراد به طور معنی داری افزایش یافت. پس از دوز دوم، افزایش قابل توجه 80 درصدی برای هر دو آنتی بادی در شرکت کنندگان مشاهده شد. درصد لنفوسیت های+TCD3 پس از اولین دوز واکسن کاهش (25%)، بدون تغییر (15%) و افزایش (60%) نشان داد. این فراوانی پس از دومین دوز به ترتیب 15، 15 و 70 درصد بود. پس از اولین دوز واکسن، کاهش 20 درصدی درصد لنفوسیت های+TCD4، عدم تغییر در 30 درصد و افزایش قابل توجه در 50 درصد مشاهده شد. پس از دوز دوم، این مقادیر به ترتیب 20، 20 و 60 درصد تعیین شد. نتایج آزمایشات واکسن Sinopharm نشان دهنده ایجاد آنتی بادی های خنثی کننده قوی و تخصصی در اکثر افراد است. علاوه بر این، دوز تقویت کننده واکسن تحریک بالای سلول های ایمنی اختصاصی را نشان می دهد.
Background and purpose: In this research, the immunological events that occurred during vaccination with COVID-19 as well as its cellular and molecular mechanisms were studied. The purpose of this study is to investigate cellular immunity and lymphocyte activating genes, as well as to identify changes in Th lymphocyte surface markers during the period of COVID-19 vaccination with Sinopharm vaccine. Materials and methods: In this study, blood was taken from 60 healthy people who had not been infected with corona in the past , and CD3 and CD4 changes during vaccination were measured. Also, IgM and IgG antibody levels were evaluated, and real time QPCR method was used to measure the expression level of IFN-α and IFN-γ genes. Results: The results showed that after the injection of the first dose of Sinopharm vaccine, IgM and IgG increased significantly in 65% and 60% of people, respectively. After the second dose, a significant increase of 80% was observed for both antibodies in the participants. The percentage of TCD3+ lymphocytes decreased (25%), remained unchanged (15%) and increased (60%) after the first dose of vaccine. This frequency after the second dose was 15, 15 and 70% respectively. After the first dose of vaccine, there was a 20% decrease in the percentage of TCD4+ lymphocytes, no change in 30% and a significant increase in 50%. After the second dose, these values were determined as 20, 20 and 60%, respectively. Conclusion: The results of the Sinopharm vaccine trials show the creation of strong and specialized neutralizing antibodies in most persons. Additionally, the booster dose of the vaccine ensures a high stimulation of memory cells.
References:
1. Chang L, Zhao L, Xiao Y, Xu T, Chen L, Cai Y, et al. Serosurvey for SARS-CoV-2 among blood donors in Wuhan, China from September to December 2019. Protein & Cell. 2023;14(1):28-36.
2. Saadedine M, El Sabeh M, Borahay MA, Daoud G. The influence of COVID-19 infection-associated immune response on the female reproductive system. Biology of reproduction. 2023;108(2):172-82.
3. Metzdorf K, Jacobsen H, Greweling-Pils MC, Hoffmann M, Lüddecke T, Miller F, et al. TMPRSS2 is essential for SARS-CoV-2 Beta and Omicron infection. Viruses. 2023;15(2):271.
4. Campisi G, Bizzoca ME, Muzio LL. A new exciting hypothesis: direct correlation between periodontitis and clinical evolution of COVID-19 patients. Qeios. 2020.
5. Sánchez JP, Varela AS, Luna ICR, Franco JGE. Rodent species as possible SARS-CoV-2 spills. GSC Biological and Pharmaceutical Sciences. 2023;22(1):295-301.
6. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-501. e15.
7. Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology. 2020;20(10):581-2.
8. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50(5):1132-48.
9. Tang F, Quan Y, Xin Z-T, Wrammert J, Ma M-J, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. The Journal of Immunology. 2011;186(12):7264-8.
10. Volk A, Hackbart M, Deng X, Cruz-Pulido Y, O’Brien A, Baker SC. Coronavirus endoribonuclease and deubiquitinating interferon antagonists differentially modulate the host response during replication in macrophages. Journal of virology. 2020;94(11):e00178-20.
11. Liu W, Fontanet A, Zhang P-H, Zhan L, Xin Z-T, Baril L, et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. The Journal of infectious diseases. 2006;193(6):792-5.
12. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clinical reviews in allergy & immunology. 2019;56:308-21.
13. Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, et al. S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio. 2020;11(5):e01991-20
14. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020;370(6522):1339-43.
15. Anderson EM, Goodwin EC, Verma A, Arevalo CP, Bolton MJ, Weirick ME, et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell. 2021;184(7):1858-64. e10.
16. Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science. 2021;7(4):512-33.
17. Greenwood B. The contribution of vaccination to global health: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1645):20130433.
18. Rudolph A, Mitchell J, Barrett J, Sköld H, Taavola H, Erlanson N, et al. Global safety monitoring of COVID-19 vaccines: how pharmacovigilance rose to the challenge. Therapeutic Advances in Drug Safety. 2022;13:20420986221118972.
19. Shah SK, Bhandari K, Shah A, Chaurasiya G. COVID-19: vaccination, therapeutics and a review of the science and public health. Ann Med Surg (Lond). 2024;86(9):5343-53.
20. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet infectious diseases. 2021;21(1):39-51.
21. Yadav PD, Ella R, Kumar S, Patil DR, Mohandas S, Shete AM, et al. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nature communications. 2021;12(1):1386.
22. Kordyukova LV, Moiseenko AV, Serebryakova MV, Shuklina MA, Sergeeva MV, Lioznov DA, et al. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses. 2023;15(2):480.
23. De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, et al. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun. 2024;15(1):2752.
24. Sapir T, Averch Z, Lerman B, Bodzin A, Fishman Y, Maitra R. COVID-19 and the Immune Response: A Multi-Phasic Approach to the Treatment of COVID-19. Int J Mol Sci. 2022;23(15).
25. Thevarajan I, Nguyen TH, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses underpinning viral clearance and patient recovery in a non-severe case of COVID-19 (preprint). 2020.
26. Malavige G, Jeewandara C, Fernando H, Pushpakumara PD, Tanussiya S, Kamaladasa A, et al. Immune responses following the first dose of the Sputnik V (Gam-COVID-Vac). 2021.
27. Zhao Z, Xie J, Yin M, Yang Y, He H, Jin T, et al. Clinical and laboratory profiles of 75 hospitalized patients with novel coronavirus disease 2019 in Hefei, China. MedRxiv. 2020:2020.03. 01.20029785.
28. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in immunology. 2020:827.
29. Bueno SM, Abarca K, González PA, Gálvez NM, Soto JA, Duarte LF, et al. Interim report: Safety and immunogenicity of an inactivated vaccine against SARS-CoV-2 in healthy chilean adults in a phase 3 clinical trial. MedRxiv. 2021:2021.03. 31.21254494.
30. Adjobimey T, Meyer J, Sollberg L, Bawolt M, Berens C, Kovačević P, et al. Comparison of IgA, IgG, and neutralizing antibody responses following immunization with Moderna, BioNTech, AstraZeneca, Sputnik-V, Johnson and Johnson, and Sinopharm’s COVID-19 vaccines. Frontiers in Immunology. 2022;13:3094.
31. Zhang H, Hu Y, Jiang Z, Shi N, Lin H, Liu Y, et al. Single-Cell Sequencing and Immune Function Assays of Peripheral Blood Samples Demonstrate Positive Responses of an Inactivated SARS-CoV-2 Vaccine. 2021.
32. Ben Ahmed M, Bellali H, Gdoura M, Zamali I, Kallala O, Ben Hmid A, et al. Humoral and Cellular Immunogenicity of Six Different Vaccines against SARS-CoV-2 in Adults: A Comparative Study in Tunisia (North Africa). Vaccines 2022, 10, 1189. s Note: MDPI stays neutral with regard to jurisdictional claims in published …; 2022.
33. Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020;160(2):126-38.
34. Hajivalili M, Hosseini M, Haji-Fatahaliha M. Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sciences. 2020;257:118058.
35. Deng X, Yu X, Pei J. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXiv preprint arXiv:200300751. 2020.
36. Cavic M, Nesic A, Mirjacic Martinovic K, Vuletic A, Besu Zizak I, Tisma Miletic N, et al. Detection of humoral and cellular immune response to anti-SARS-CoV-2 BNT162b2 vaccine in breastfeeding women and naïve and previously infected individuals. Scientific Reports. 2023;13(1):6271.
37. Tavukcuoglu E, Yanik H, Parveen M, Uluturk S, Durusu-Tanriover M, Inkaya AC, et al. Human memory T cell dynamics after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccination. Scientific Reports. 2023;13(1):4610.
38. Koller A, Szebeni J. Covid-19 vaccines elicit effective IgG responses in an elderly thymus cancer patient with chemotherapy. Human Vaccines & Immunotherapeutics. 2023:2188035.
39. Al-Tamimi M, Tarifi AA, Qaqish A, Abbas MM, Albalawi H, Abu-Raideh J, et al. Immunoglobulins response of COVID-19 patients, COVID-19 vaccine recipients, and random individuals. PLoS One. 2023;18(2):e0281689.
40. Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity. 2020;53(6):1136-50.