اثر بازدارندگی عصاره آلیوم ساتیوم بر قارچهای ساپروفیتی و سمزای جدا شده از مایونز
محورهای موضوعی : آلودگی میکروبی مواد غذائیمحمد علی ضیاء 1 , محمد گلی 2 , اردشیر ضیایی 3
1 - گروه علوم پایه پزشکی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران
2 - هیات علمی دانشگاه ازاد اسلامی واحد اصفهان(خوراسگان)
3 - 3گروه قارچ شناسی پزشکی و دامپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران ایران
کلید واژه: آلودگی مواد غذایی, سیر, آلودگی قارچی, کپک ها,
چکیده مقاله :
سیر بدلیل طعم دهندگی، ویژگی های پیشگیری و درمانی، ضدقارچی و ضد باکتریایی یکی از مهم ترین گیاهان مورد استفاده در غذاها است. برخی از قارچ ها در مواد غذایی رشد کرده و می توانند باعث آلودگی مواد غذایی شوند. هدف از این مطالعه، ارزیابی فعالیت ضد قارچی عصاره های آلیوم ساتیووم بر روی قارچ های رشته ای جدا شده از سس مایونز بود. قارچ های رشد یافته بر روی مایونز در محیط سابورودکستروز آگار محتوی کلرآمفنیکل کشت داده شد. قارچ ها بر اساس ویژگیهای ظاهری و ریزبینی شناسائی گردیدند. روش های چاهک پلیت و دیسک انتشاری برای اندازه گیری اثرات ممانعت کننده عصاره ها علیه سویه های هدف مورد نظر در آزمایش، بکار گرفته شدند، همچنین حداقل غلظت ممانعت کننده هر عصاره تعیین گردید. قارچهای آسپرژیلوس نیجر، آ. فومیگاتوس، آ. فلاووس، پنی سیلیوم، موکور، رایزوپوس، کلادوسپوریوم، فوزاریوم، آلترناریا و ژئوتریکوم شناسایی گردید. بیشترین فعالیت ضدقارچی برای عصاره های آبی در غلظت 300 میکروگرم بر میلی لیتر بدست آمد. بیشترین و کمترین ممانعت از رشد به ترتیب مربوط به فوزاریوم (2/33 میلی متر) و آ. نیجر (2/25 میلی متر) بود. حداقل غلظت ممانعت کننده برای آ. نیجر، آ. فلاووس، آ. فومیگاتوس، پنی سیلیوم، موکور، رایزوپوس و آلترناریا برابر با 350 و برای کلادوسپوریوم، فوزاریوم و ژئوتریکوم 300 میکروگرم بر میلی لیتر تعیین شد. حداقل غلظت ممانعت کننده عصاره های متانولی و اتانولی بالاتر از مقادیر مربوط به عصاره آبی بود. نتایج نشان داد که سیر میتواند به عنوان یک عامل ضد قارچ طبیعی در مواد غذایی استفاده شود.
For its flavoring, prophylactic, and medicinal qualities, Allium sativum is one of the most common plants used in foods. Food poisoning is caused by fungi that grow on foods. The goal of this study was to see whether Allium sativum extracts had antifungal efficacy against saprophytic and toxigenic fungi isolated from contaminated mayonnaise sauce. The mayonnaise-grown fungi were moved to sabouraud's dextrose agar supplemented with chloramphenicol, and macroscopic and microscopic characteristics were used to identify them. The extracts' inhibitory effects against all of the targeted strains studied in the experiment were measured using disc and well diffusion techniques, as well as the minimum inhibitory concentration of each extract. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium sp., Mucor sp., Rhizopus sp., Cladosporium sp., Fusarium sp., Alternaria sp., and Geotrichum sp. were found. The aqueous extract with the greatest antifungal activity was collected at a concentration of 300 g/ml. Fusarium (33.2 mm) and A. niger (25.2 mm) had the highest and lowest inhibition zones, respectively. Aquatic extract's MIC was estimated to be 350 g/ml for A. niger, A. fumigatus, A. flavus, Mucor sp., Rhizopus sp., Penicillium sp., and Alternaria sp., and 300 g/ml for Cladosporium sp., Fusarium sp., and Geotrichum sp. The MIC of methanol and ethanol extracts was greater than that of aqueous extracts.
Aala F., Yusuf U.K., Nulit R., Rezaie S. 2014. Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae. Iran J Basic Med Sci 17: 150-154. PMCID: PMC4016684
Alshannaq A., Yu J.H. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14(6): E632. doi:10.3390/ijerph14060632.
Avasthi S., Gautam A.K., Bhadauria R. 2010. Antifungal activity of plant products against Aspergillus niger: A potential application in the control of a spoilage fungus. Biol Forum 2(1): 53-55.
Brr A.H., Mustafa N.Y., Edris A.M. 2004. Incidence of moulds and aflatoxins in some meat products. Benha Vet Med J 15(2): 65-75.
Burian J.P., Sacramento L.V.S., Carlos I.Z. 2017. Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Braz J Biol 74(4): 848-855. doi:10.1590/1519-6984.03716.
Cao H., Huang C., Wang X. 2016. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes. Exp Ther Med 11: 1896-1900. doi:10.3892/etm.2016.3116
Chen C., Liu C.H., Cai J., Zhang W., Qi W.L., Wang Z., Liu Z.B., Yi Y. 2018. Broad-spectrum antimicrobial activity, chemical composition and mechanism of garlic (Allium sativum) extracts. Food Control 86: 117-125. doi:10.1016/j.foodcont.2017.11.015
Cheng H., Huang G. 2018. Extraction, characterization and antioxidant activity of Allium sativum polysaccharide. Int J Biol Macromol 114: 415-419. doi: 10.1016/j.ijbiomac.2018.03.156.
Darko S., Mills-Robertson F.C., Wierko-Manu F.D. 2017. Fungal contamination of food prepared in some hotels in Kumasi metropolis. Int Food Res J 24(2): 860-867.
Faraji M., Rahbarzare F. 2016. Simultaneous determination of four preservative in foodstuffs by high performance liquid chromatography. Nutr Food Sci Res 3(2): 43-50. doi:10.18869/acadpub.nfsr.3.2.43
Fujisawa H., Watanabe K., Suma K., Origuchi K., Matsufuji H., Seki T., Ariga T. 2009. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci, Biotechnol, Biochem 73(9): 1948-1955. doi:10.1271/bbb.90096
Gull I., Saeed M., Shukat H., Aslam S.M., Samra Z.Q., Atar A.M. 2012. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Ann Clin Microbiol Antimicrob 11(8): 1-6. doi:10.1186/1476-0711-11-8.
Hakim A.S., Alarousy R.M. 2015. Incidence of fungal infections and mycotoxicosis in pork meat and pork by-products in Egyptian markets. . Int J Nut & Food Eng 9(7): 816-819.
Kabak B., Dobson A.D.W., Var I. 2006. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46(8): 593–619. doi:10.1080/10408390500436185
Klebukowska L., Zadernowska A., Chajecka-Wierzchowska W. 2015. Microbiological contamination of dried and lyophilized garlic as a potential source of food spoilage Food Sci Technol 52(3): 1802-1807. doi:10.1007/s13197-013-1169-6.
Lanzotti V., Barile E., Antgnani V., Bonanomi G., Scala F. 2012. Antifungal saponin from bulbs of garlic. Phytochemistry 78: 126-134. doi:10.1016/j.phytochem.2012.03.009.
Lemons J.G., Garcia M.V., Mello R.O., Copetti V. 2018. Consumers complain about moldy foods in a Brazilian website. Food Control 92: 380-385. doi:10.1016/j.foodcont.2018.05.017.
Majewski M. 2014. Allium sativum: Facts and myths regarding human health. Rocz Panstw Zakl Hig 65(1): 1-8.
Martins N., Petropoulos S., Ferreira I.C.F.R. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food Chem 211: 41-50. doi:10.1016/j.foodchem.2016.05.029
Meriga B., Mopuri R., Muralikrishna T. 2012. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med 5(5): 391-395. doi:10.1016/S1995-7645(12)60065-0.
Najda A., Blaszczyk L., Winiarczyk K., Dyduch J., Tchorzewska D. 2016. Comparative studies of nutritional and health-enhancing properties in the “garlic-like” plant Allium ampeloprasum var. ampeloprasum (GHG-L) and A. Sativum. Sci Hortic 201: 247-255. doi:10.1016/j.scienta.2016.01.044
Paudel K.R. 2014. Pharmacological effects of traditional herbal garlic (Allium sativum): A review. Kathmandu Univ Med Coll J 3(4): 158-160.
Pirali Khairabadi, E., Sedigheh Mousavi, S., Momtaz, H., Nikokhah, F., Hosseini Shekarabi, S., Raissy, M. 2020. Prevalence and phylogenetic analysis of Listeria monocytogenes isolated from the fillets of two farmed fish in Shahrekord in 2018. J Food Microbiol, 7(4), 81-93.
Queiroz Y.S., Ishimoto E.Y., Bastos D.H.M., Sampaio G.R., Torres E.A.F.S. 2009. Garlic and ready-to-eat garlic products: In vitro antioxidant activity. Food Chem 115: 371-374. doi:10.1016/j.foodchem.2008.11.105.
Raissy, M., Keyhani, K., Pirali, K. 2020. Comparison of the effects of Geranium, lavender and garlic extracts on Ichthyophthirius multifiliis in naturally infected Capoeta damascina. J Anim Environ, 12(4), 307-310. doi: 10.22034/aej.2020.121630
Rawat S. 2015. Food spoilage: Microorganisms and their prevention. Asian J Plant Sci & Res 5(4): 47-56.
Rico-Munoz E., Samson R.A., Houbraken J. 2019. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 81: 51-62. doi:10.1016/j.fm.2018.03.016.
Samuel J.K., Andrews B., Jebashree H.S. 2000. In vitro evaluation of the antifungal activity of Allium sativum bulb extract against Trichophyton rubrum, a human skin pathogen. World J Microbiol Biotechnol 16: 617-620. doi:10.1023/A:1008972016316
Shoshi S.J., Akter H. 2017. Effects of Garlic (Alium sativum) on blood glucose level in type 2 diabetes mellitus patients treated with metformin. J Enam Med Coll 7(3): 151-155. doi:10.3329/jemc.v7i3.34075
Sittisart P., Yossan S., Prasertsan P. 2017. Antifungal property of chili, shallot and garlic extracts against pathogenic fungi, Phomopsis spp., isolated from infected leaves of para rubber (Hevea brasiliensis Muell. Arg). Agric & Nat Resour 51(6): 85-491. doi:10.1016/j.anres.2018.03.005
Suleiman E.A., Abdallah W.B. .2014. In Vitro activity of garlic (Allium sativum) on some pathogenic fungi. European J Med Plants 4(10): 1240-1250. doi:10.9734/EJMP/2014/10132
Touloupakis E., Ghanotakis D.F. 2010. Nutraceutical use of garlic sulfur-containing compounds. In: Giardi M.T., Rea G., Berra B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology. Springer, Boston, MA 698: 110-121. doi:10.1007/978-1-4419-7347-4_9.
Wang H., Yang Z., Ying G., Yang M., Nian Y., Wei F., Kong W. 2018. Antifungal evaluation of plant essential oils and their major components against toxigenic fungi. Ind Crops Prod 120: 180-186. doi:10.1016/j.indcrop.2018.04.053
Zarei Mahmoudabadi A., Gharib Nassery M.K. 2009. Antifungal activity of shallot, Allium ascalonicum Linn (Liliaceae), in vitro. . J Med Plants Res 3(5): 450-453. Article Number - 50D1BA915299
_||_