Tribological Properties of Al2024-2wt.%TiO2 Nanocomposite Produced by Mechanical Alloying and Hot-Pressing
Subject Areas : Mechanical Alloying
1 - Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, 3619995161, Iran
Keywords: nanocomposite, Hardness, Wear, Al2024 alloy,
Abstract :
Aluminum matrix composites has recently gained increased attention for structural applications in many industries due to their excellent properties. In this research, machining scraps of coarse-grained Al2024-T3 alloy were used to prepare nanostructured Al2024 alloy and Al2024-2wt.%TiO2 nanocomposite. Then, tribological behavior of bulk nanostructured Al2024 alloy and Al2024-2wt.%TiO2 nanocomposite, produced by 10 h of mechanical alloying and subsequent hot-pressing at 500 C for 20 min, was investigated. Hardness measurements on the samples revealed that the hardness value of mechanically alloyed and hot-pressed Al2024 alloy reached a value of 198 HV, which was 41% higher than that for the initial coarse-grained Al2024-T3 alloy (140 HV). The average hardness values of Al2024-2wt.%TiO2 nanocomposite was found to be 238 HV, which showed ~ 20% increase compared with that for the nanostructured Al2024 alloy. The wear resistance of samples changed in the order of coarse-grained Al2024 alloy
References
[1] M.T.A. El-Khair, A.A. Aal, "Erosion–corrosion and surface protection of a356 al/ZrO2 composites produced by vortex and squeeze casting", Mater. Sci. Eng. A, Vol. 454-455, 2007, pp. 156-163.
[2] R. Ipek, "Adhesive wear behaviour of b4c and SiC reinforced 4147 al matrix composites (al/B4C–Al/SiC)", J. Mater. Proc. Technol., Vol. 162-163, 2005, pp. 71-75.
[3] K. Ozturk, R. Gecu, A. Karaaslan, "Microstructure, wear and corrosion characteristics of multiple-reinforced (SiC–B4C–Al2O3) al matrix composites produced by liquid metal infiltration", Ceram. Int., Vol. 47, 2021, pp. 18274-18285.
[4] K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis, "Tribo-surface characteristics of Al–Bb4C and Al–SiC composites worn under different contact pressures", Wear, Vol. 261, 2006, pp. 634-641.
[5] S. Sharma, J. Singh, M.K. Gupta, M. Mia, S.P. Dwivedi, A. Saxena, S. Chattopadhyaya, R. Singh, D.Y. Pimenov, M.E. Korkmaz, "Investigation on mechanical, tribological and microstructural properties of Al–Mg–Si–T6/SiC/muscovite-hybrid metal-matrix composites for high strength applications", J. Mater. Res. Technol., Vol. 12, 2021, pp. 1564-1581.
[6] X.Z. Zhang, T.J. Chen, Y.H. Qin, "Effects of solution treatment on tensile properties and strengthening mechanisms of SiCp/6061Al composites fabricated by powder thixoforming", Mater. Des., Vol. 99, 2016, pp. 182-192.
[7] S.E. Hernández-Martínez, J.J. Cruz-Rivera, R. Martínez-Sánchez, C.G. Garay-Reyes, J.A. Muñoz-Bolaños, J.M. Cabrera, "Consolidation of AA 7075-2 wt% ZrO2 composite powders by severe plastic deformation via ecap", Acta Metall. Sin. (Engl. Lett.), Vol. 29, 2016, pp. 895-901.
[8] X. Xie, S. Yin, R.N. Raoelison, C. Chen, C. Verdy, W. Li, G. Ji, Z. Ren, H. Liaoa, "Al matrix composites fabricated by solid-state cold spray deposition: A critical review", J. Mater. Sci. Technol., Vol. 86, 2021, pp. 20-55.
[9] B.A. Kumar, N. Murugan, I. Dinaharan, "Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite", Trans. Nonferrous Met. Soc. China, Vol. 24, 2014, pp. 2785-2795.
[10] A. Mazahery, M.O. Shabani, "Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting", Trans. Nonferrous Met. Soc. China, Vol. 23, 2013, pp. 1905-1914.
[11] K.B. Lee, H.S. Sim, S.Y. Cho, H. Kwon, "Reaction products of Al–Mg/B4C composite fabricated by pressureless infiltration technique", Mater. Sci. Eng. A, Vol. 302, 2001, pp. 227-234.
[12] I. Kerti, F. Toptan, "Microstructural variations in cast B4C-reinforced aluminum matrix composites.", Mater. Lett., Vol. 62, 2008, pp. 1215-1218.
[13] M. Kouzeli, C.S. Marchi, A. Mortensen, "Effect of reaction on the tensile behavior of infiltrated boron carbide–aluminum composites.", Mater. Sci. Eng. A, Vol. 337, 2002, pp. 264-273.
[14] R.M. Mohanty, K. Balasubramanian, S.K. Seshadri, "Boron carbide-reinforced alumnium 1100 matrix composites: Fabrication and properties", Mater. Sci. Eng. A, Vol. 498, 2008, pp. 42-52.
[15] I. Topcu, H.O. Gulsoy, N. Kadioglu, A.N. Gulluoglu, "Processing and mechanical properties of B4C reinforced al matrix composites.", J. Alloy Cmpd., Vol. 482, 2009, pp. 516-521.
[16] M. Prashanth, R. Karunanithi, S. RasoolMohideen, S. Sivasankaran, "A comprehensive exploration on the development of nano Y2O3 dispersed in AA 7017 by mechanical alloying and hot-pressing technique", Ceram. Int., Vol. In Press, 2021, pp.
[17] E. Dastanpoor, M.H. Enayati, "Effect of milling intensity on mechanical alloying of Cu-Zr-Al system ", Ind. J Eng. Mater. Sci. , Vol. 22, 2015, pp. 521-526.
[18] C. Suryanarayana, "Mechanical alloying and milling", Progress in Materials Science, Vol. 46, 2001, pp. 1-184.
[19] C. Suryanarayana, N. Al-Aqeeli, "Mechanically alloyed nanocomposites", Prog. Mater. Sci., Vol. 58, 2013, pp. 383-502.
[20] J.N.R. Olveraa, G.J.G. Paredes, A.R. Serrano, E.R. López, E.M. Franco, P.T. Meza, L.D.B. Arceo, "Synthesis and characterization of a MoWC-Wc-NiC nanocomposite via mechanical alloying and sintering", Powder Technol., Vol. 271, 2015, pp. 292-300.
[21] R.M. Babaheydari, S.O. Mirabootalebi, G.H.A. Fakhrabadi, "Effect of alloying elements on hardness and electrical conductivity of Cu nanocomposites prepared by mechanical alloying", Iranian Journal of Materials Science and Engineering, Vol. 18, 2021, pp. 1-11.
[22] E.M. Sharifi, F. Karimzadeh, "Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy", Wear, Vol. 271, 2011, pp. 1072-1079.
[23] M. Slimi, M. Azabou, L. Escoda, J.J. Suñol, M. Khitouni, "Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying", Powder Technol., Vol. 266, 2014, pp. 262-267.
[24] J.W. Kaczmar, K. Pietrzak, W. Wlosinski, "The production and application of metal matrix composite materials", J. Mater. Process. Technol., Vol. 106, 2000, pp. 58-67.
[25] R. Karunanithi, S. Bera, K.S. Ghosh, "Electrochemical behaviour of TiO2 reinforced Al 7075 composite", Mater. Sci. Eng. B, Vol. 190, 2014, pp. 133-143.
[26] C.A.V. Kumar, J.S. Rajadurai, "Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy", Trans. Nonferrous Met. Soc. China, Vol. 26, 2016, pp. 63-73.
[27] S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, V.K. Iyer, "Synthesis, structure and sinterability of 6061 AA100−x–x wt.% TiO2 composites prepared by high-energy ball milling", J. Alloy Cmpd., Vol. 491, 2010, pp. 712-721.
[28] S. Bera, S.G. Chowdhury, Y. Estrin, I. Manna, "Mechanical properties of Al7075 alloy with nano-ceramic oxide dispersion synthesized by mechanical milling and consolidated by equal channel angular pressing", J. Alloy Cmpd., Vol. 548, 2013, pp. 257-265.
[29] S.H. Nourbakhsh, M. Tavakoli, M.A. Shahrokhian, "Investigations of mchanical, mcrostructural and tibological properties of Al2024 nanocomposite reinforced by TiO2 nanoparticles", Mater. Res. Express, Vol. 5, 2018, pp. 1-14.
[30] B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, "Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling", Mater. Sci. Eng. A, Vol. 425, 2006, pp. 192-200.
[31] Z.R. Hesabi, H.R. Hafizpour, A. Simchi, "An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling", Mater. Sci. Eng. A, Vol. 454-455, 2007, pp. 89-98.
[32] E.M. Ruiz-Navas, J.B. Fogagnolo, F. Velasco, J.M. Ruiz-Prieto, L. Froyen, "One step production of aluminium matrix composite powders by mechanical alloying", Composites, Vol. 37, 2006, pp. 2114-2120.
[33] Y. Saberi, S.M. Zebarjad, G.H. Akbari, "On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite", J. Alloy Cmpd., Vol. 484, 2009, pp. 637-640.
[34] I. Ozdemir, S. Ahrens, S. Mucklich, B. Wielage, "Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling", J. Mater. Proc. Technol., Vol. 205, 2008, pp. 111-118.
[35] K. Williamson, W.H. Hall, "X-ray line broadening from field aluminum and wolfram ", Acta Metallurgica, Vol. 1, 1953, pp. 22-31.
[36] Handbook Comittee, "Standard test method for wear testing with a pin-on-disk apparatus", ASTM, 2005.
[37] H. Ashrafi, M.H. Enayati, R. Emadi, "Nanocrystalline Al/Al12(Fe,V)3Si alloy prepared by mechanical alloying: Synthesis and thermodynamic analysis", Adv. Powder Technol., Vol. 25, 2014, pp. 1483-1491.
[38] N. Yazdian, F. Karimzadeh, M. Tavoosi, "Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing", J. Alloy Cmpd., Vol. 493, 2010, pp. 137-141.
[39] M. Jafari, M.H. Abbasi, M.H. Enayati, F. Karimzadeh, "Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods," Adv. Powder Technol., Vol. 23, 2012, pp. 205-210.
[40] G.E. Dieter, Mechanical metallurgy, ed., McGraw-Hill, Singapor, 1988, 215.
[41] M.J. Ghazali, W.M. Rainforth, M.Z. Omar, "A comparative study of mechanically mixed layers (mmls) characteristics of commercial aluminium alloys sliding against alumina and steel sliders", J. Mater. Proc. Technol., Vol. 201, 2008, pp. 662-668.
[42] B. Venkataraman, G. Sundararajan, "Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs", Wear, Vol. 245, 2000, pp. 22-38.
[43] X.Y. Li, K.N. Tandon, "Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite", Wear, Vol. 245, 2000, pp. 148-161.
[44] J. Rodríguez, P. Poza, M.A. Garrido, A. Rico, "Dry sliding wear behaviour of aluminium–lithium alloys reinforced with SiC particles", Wear, Vol. 262, 2007, pp. 292-300.
[45] H.J. Kim, J.M. Lee, Y.H. Cho, S.Y. Sung, B.S. Han, Y.S. Ahn, "Microstructures and wear properties of Al–Mg–Si alloy with the addition of ball-milled CoNi powders", Mater. Charact., Vol. 70, 2012, pp. 137-144.
[46] M.R. Rosenberger, C.E. Schvezov, E. Forlerer, "Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer", Wear, Vol. 259, 2005, pp. 590-601.
[47] H. Ashrafi, M.H. Enayati, R. Emadi, "Tribological properties of nanostructured Al/Al12(Fe,V)3Si alloys", Acta Metall. Sin. (Engl. Lett.), Vol. 28, 2015, pp. 83-92.
[48] A.S. Anasyida, A.R. Daud, M.J. Ghazali, "Dry sliding wear behaviour of Al–12Si–4Mg alloy with cerium addition", Mater. Des., Vol. 31, 2010, pp. 365-374.
[49] E.M. Sharifi, F. Karimzadeh, M.H. Enayati, "Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites", Mater. Des., Vol. 32, 2011, pp. 3263-3271.
[50] K. Kato, "Wear in relation to friction — a review", wear, Vol. 241, 2000, pp. 151-157.
[51] F. Tang, X. Wu, S. Ge, J. Ye, H. Zhu, M. Hagiwara, J.M. Schoenung, "Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites", wear, Vol. 264, 2008, pp. 555-561.
[52] M. Jafari, M.H. Enayati, M.H. Abbasi, F. Karimzadeh, "Compressive and wear behaviors of bulk nanostructured Al2024 alloy", Mater. Des., Vol. 31, 2010, pp. 663-669.
[53] N. Hosseini, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, "Tribological properties of Al6061–Al2O3 nanocomposite prepared by milling and hot pressing", Mater. Des., Vol. 31, 2010, pp. 4777-4785.