A numerical study of supercritical water oxidation of phenol
Subject Areas : Journal of the Iranian Chemical ResearchMajid Bazargan 1 * , Maryam Akbari 2
1 - Mechanical Engineering Department, K. N. Toosi University of Technology, Mollasadra Ave., Tehran
1999143344, Iran
2 - Mechanical Engineering Department, K. N. Toosi University of Technology, Mollasadra Ave., Tehran
1999143344, Iran
Keywords: Oxidation, Supercritical water, Phenol destruction, Reactor modeling, Nonstationary,
Abstract :
Supercritical water oxidation has attracted attention of many researchers ever since the ideahas emerged about three decades ago as a promising technique in the waste managementindustry. Providing more details about the behavior of a supercritical water oxidation systemunder various operating conditions and extending available data can greatly assist more accurateand reliable design of such systems. In this study, oxidation of phenol in supercritical water hasbeen modeled as a plug flow reactor. The variations of main system parameters such astemperature and waste concentration along the reactor have been calculated. The numericalmodel predictions have been compared with available experiments and good agreement has beenobtained for steady state operation conditions. In addition, the responses of the numerical modelto some unsteady events, such as sudden increases of mass flow rate or fluid inlet temperaturehave been examined. These situations may possibly occur due to malfunction of variouscomponents of the system. It has been shown that the design temperature of the reactor withusual consideration of the safety factors supports the probable range of sudden alterations.
[1] P. Kritzer, Chem. Eng. J. 83 (2001) 207–214.
[2] PhD thesis, M.A. Paradowska, Tailored chemical oxidation techniques for the abatement of bio-toxic
organic wastewater pollutants: An experimental study, Dissertation presented to obtain the degree:
Doctor in Chemical Engineering of the Rovira i Virgili University, (2004).
[3] T.D. Thornton, P.E. Savage, J. Supercritical Fluids 3 (1990) 240–248.
[4] M. Koo, W.K. Lee, C.H. Lee, Chem. Eng. Sci. 52 (1997) 1201–1214.
[5] S.F. Rice, R.R. Steeper, J. Hazardous Materials 59 (1998) 261–278.
[6] A. Yermakova, P. E. Mikenin, V. I. Anikeev, Theoretical Foundations of Chem. Eng. 40 (2006) 168–
174.
[7] I. V. Pérez, S. Rogak, R. Branion, J. Supercritical Fluids 30 (2004) 71–87.
[8] J. Yu, P. E. Savage, Ind. Eng. Chem. Res. 37 (1998) 2-10.
[9] R. Lachance, J. Paschkewitz, J. DiNaro, J.W. Tester, J. Supercritical Fluids 16 (1999) 133–147.
[10] S. Bianchetta, L Li, E. F. Gloyna, Ind. Eng. Chem. Res. 38 (1999) 2902-2910.
[11] J. H. Lee, N. R. Foster, J. Ind. Eng. Chemistry, 5 (1999) 116-122.
[12] C. Aymonier, P. Beslin, C. Jolivalt, F. Cansell, J. Supercritical Fluids 17 (2000) 45–54.
[13] J.L. DiNaro, J.W. Tester, K.C. Swallow, J.B. Howard, AIChE J. 46 (11) (2000) 2274–2284.
[14] M. J. Cocero, E. Alonso, R. Torıo, D. Vallelado, T. Sanz, and F. Fdz-Polanco, Ind. Eng. Chem. Res.
39 (2000) 4652-4657.
[15] F. Chen, J. Chen, S. Wu and S. Rong, China-Japan International Academic Symposium
Environmental Problem in Chinese Iron-Steelmaking Industries and Effective Technology Transfer, 6
(2000) 115-122.
M. Akbari & et al. / J. Iran. Chem. Res. 4 (2011) 187-198
198
[16] X. Qi, Y.Y. Zhuang, Y.Ca Yuan, W.X. Gu, J. Hazardous Materials B90 (2002) 51–62.
[17] D. Klingler, J. Berg, H. Vogel, J. Supercritical Fluids 43 (2007) 112–119.
[18] C.H. Lee, K.-Y. Hwang, H.C. Lee, J.H. In, Theories and Applications of Chem. Eng. 9 (2003) 1845-
1848.
[19] M. Okazaki, T. Funazukuri, 6th International Symposium on SUPERCRITICAL FLUIDS, 2003.
[20] H.C. Lee, J.H. In, K.Y. Hwang, C.H. Lee, Ind. Eng. Chem. Res. 43 (2004) 3223-3227.
[21] H.C. Lee, J.H. In, J. Supercritical Fluids 36 (2005) 59–69.
[22] V. I. Anikeev, A. Ermakova, M. Goto, Kinetics and Catalysis, 46 (2005) 821–825.
[23] Y. Matsumura, T. Minowa, B. Potic, S. R.A. Kersten, W. Prins, W. P.M. van Swaaij, B. van de Beld,
D. C. Elliott, G. G. Neuenschwander, A. Kruse, M. J. Antal Jr., Biomass and Bioenergy 29 (2005)
269–292.
[24] I. M. Svishchev, A. Plugatyr, J. Supercritical Fluids 37 (2006) 94–101
[25] O. O. Sogut, M. Akgun, J. Supercritical Fluids 43 (2007) 106–111
[26] V. Bambang, K. Jae-Duck, J. Environmental Sci. 19 (2007) 513–522.
[27] C. Shuang-jun, L. Yu-cun, J. Environmental Sci. 19 (2007) 1430–1435.
[28] Y. H. Shin, N. C. Shin, B. Veriansyah, J. Kim, Y.W. Lee, J. Hazardous Materials 163 (2009) 1142–
1147.
[29] B. Cui, F. Cuia, G. Jing, S. Xu,W. Huo, S. Liu, J. Hazardous Materials 165 (2009) 511–517.
[30] D. Bo, F.S. Zhang, L. Zhao, J. Hazardous Materials 170 (2009) 66–71.
[31] J.H. Lee, S.H Son, T. T. Viet, C.H. Lee, Korean J. Chem. Eng. 26 (2009) 398-402.
[32] T. Yoshida, Y. Matsumura, Ind. Eng. Chem. Res. 48 (2009) 8381–8386.
[33] N. Liu, H.y. Cui, D. Yao, Process Safety and Environmental Protection 87 (2009) 387–394.
[34] Y. Guo, S. Wang, Y. Gong, D. Xu, X. Tang, H. Ma, J. Hazardous Materials 180 (2010) 137–144.
[35] G. Weijin, D. Xuejun, Waste Management 30 (2010) 2103-2107.
[36] M. Krajnc, J. Levec, AICHE J. 42 (1996) 1977.
[37] R. Li, P. E. Savage, D. szmukler, AIChE J. 39 (1993) 178-187.
[38] J. R. Portela, E. Nebot, E. M. de la Ossa, J. Supercritical Fluids 21 (2001) 135–145.
[39] B. M. Lee, B. Veriansyah, S.H. Kim, J.D. Kim, Y.W. Lee, Korean J. Chem. Eng. 22 (2005) 579-584.
[40] F. Vogel, J. L. D. Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, K. A. Smith, J.
W. Tester, J. Supercritical Fluids 34 (2005) 249–286.
[41] K. M. Benjamin, P. E. Savage, Ind. Eng. Chem. Res. 44 (2005) 9785-9793.
[42] L. DS Pinto, L M F. dos Santos, R. CD Santos, B. Al-Duri, J. Chem. Technol. Biotechnol. 81 (2006)
919–926.
[43] J. A. Onwudili, P. T. Williams, J. Supercritical Fluids 43 (2007) 81–90.
[44] K. Koido, Y. Ishida, K. Kumabe, K. Matsumoto, T. Hasegawa, J. Supercritical Fluids 55 (2010) 246-
251.
[45] M. Bazargan, D. Fraser, J. Heat Transfer 131 (2009)
[46] M. Bazargan, M. Mohseni, J. Supercritical Fluids, 51 (2009) 221-229.
[47] M. Bazargan, M. Mohseni, ASME J. Heat Transfer, 133 (2011)
[48] N. Zhou, A. Krishnan, F. Vogel, W. A. Peters, Advances in Environmental Research 4 (2000) 79-95.
[49] C. Narayanan, C. Frouzakis, K. Boulouchos, K. Prıkopsky, B.Wellig, P. Rudolf von Rohr, J.
Supercritical Fluids 46 (2008) 149–155.
[50] M. D. Bermejo, A. Martin, J. P.S. Queiroz, I. Bielsa, V. Rios, M. J. Cocero, Chem. Eng. J. 158
(2010) 431–440.
[51] P. Dutournie, J. Mercadier, J. Supercritical Fluids 35 (2005) 247–253.
[52] S. Vielcazals, J. Mercadier, F. Marias, D. Mate´os, M. Bottreau, F. Cansell, C. Marraud, AIChE J. 52
(2006) 818-825.
[53] A. Fourcault, B. Garcia-Jarana, J. Sanchez-Oneto, F. Marias, J.R. Portela, Chem. Eng. J. 152 (2009)
227–233.
[54] J.R. Portela, E. Nebot, E.M. de la Ossa, Chem. Eng. J. 81 (2001) 287-299.
[55] L. Li, P. Chen, E.F. Gloyna, Chemical oxidation: technology for the nineties, in: W. Eckenfelder, A.
Bowers, J. Roth (Eds.), Proceedings of the Third International Symposium on the Chemical
Oxidation: Technology for the Nineties, 1994.