Conformational behaviors of trans-2,3-bis(methylthio)-1,4-dioxane, -dithiane and –diselenane. A hybrid-DFT study and NBO interpretations
Subject Areas : Journal of the Iranian Chemical ResearchDavood Nori-Shargh 1 , Zahra Mahmoodi 2 , Nasrin Masnabadi 3 , Hooriye Yahyaei 4 , Seiedeh Negar Mousavi 5
1 - Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran
4 - Department of Chemistry, Islamic Azad University, Zanjan Branch, P.O.Box 49195.467,Zanjan, Iran
5 - Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran
Keywords: anomeric effects, Stereoelectronic interactions, Molecular modeling, Ab initio, NBO, 2, 3-bis(methylthio)-1, 4-dithiane,
Abstract :
The conformational behaviors of 2,3-bis(methylthio)-1,4-dioxane (1), 2,3-bis(methylthio)-1,4-dithiane (2) and 2,3-bis(methylthio)-1,4-diselenane (3) have been analyzed by means ofhybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBO interpretation.B3LYP/Def2-TZVPP results showed that the axial conformations of compounds 1-3 are morestable than their equatorial conformations. The calculated Gibbs free energy difference (Geq–Gax)values (i.e. ΔGeq-ax) at 298.15 K and 1 atm between the axial and equatorial conformationsdecrease from compound 1 to compound 3. The NBO analysis of donor-acceptor (LP→σ*)interactions showed that the anomeric effects (AE) decrease from compound 1 to compound 3.On the other hand, the calculated dipole moment values between the axial and equatorialconformations [Δ(μeq - μax)] increase from compound 1 to compound 2 but decrease fromcompound 2 to compound 3. However, the variations of the calculated Δ(μeq - μax) values are notin the same trend observed for the corresponding AE and ΔG values. Therefore, the calculatedΔμ values do not seem to be sufficient to account for the axial preferences in compounds 1-3.These findings led to the proposal that the AE, due to donor→acceptor hyperconjugation effect,is more significant for the explanation of the axial conformational preferences of compounds 1-3than the electrostatic effect.
[1] U. Lemieux, S. Koto, Tetrahedron 30 (1974) 1933-1944.
[2] T. Edwards, Chem. Ind. (London) (1955) 1102-1111.
[3] E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press. Inc., Florida, 1995.
[4] C. Altona, C. Romers, E. Havinga, Tetrahedron Lett. 21 (1959) 16-20.
[5] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer, F. Bernardi, J. Am. Chem. Soc. 99 (1977)
8379-8388.
[6] E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994.
[7] J.P. Praly, R.U. Lemieux, Can. J. Chem. 65 (1987) 213-223.
[8] M.A. Pericás, A. Riera, J. Guilera, Tetrahedron 42 (1986) 2717-2718.
[9] N.S. Zefirof, L.G. Gurvich, A.S. Shashkov, M.Z. Krimer, E.A. Vorob’eva, Tetrahedron 32 (1976)
1211-1219.
[10] E.L. Eliel, E. Juaristi, J. Am. Chem. Soc. 100 (1978) 6114-6119.
[11] E. Juaristi, J. Chem. Edu. 56 (1979) 438-441.
[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian
03, Revision B.03, Gaussian, Inc., Wallingford CT, 2004.
[13] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
[14] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
[15] W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory Wiley, New
York, 1986.
[16] J.M. Seminario, P. Politzer, (Eds), Modern Density Function Theory, A Tool for Chemistry,
Elsevier, Amsterdam, 1995.
[17] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F.
Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004. NBO
Version 5.G.
[18] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.
[19] D. Nori-Shargh, F. Roohi, F. Deyhimi, R. Naeem-Abyaneh, J. Mol. Struct. (Theochem) 763 (2006)
21-28.
D. Nori-Shargh & et al. / J. Iran. Chem. Res. 3 (2010) 179-189
189
[20] D. Nori-Shargh, M. Malekhosseini, F. Deyhimi, J. Mol. Struct. (Theochem) 763 (2006) 187-198.
[21] D. Nori-Shargh, F. Deyhimi, J.E. Boggs, S. Jameh-Bozorghi, R. Shakibazadeh, J. Phys. Org. Chem.
20 (2007) 355-364.
[22] D. Nori-Shargh, H. Yahyaei, J. Mol. Struct. (Theochem) 913 (2009) 8-15.
[23] D. Nori-Shargh, N. Hassanzadeh, M. Kosari, S. Sharifi, J. Mol. Struct. (Theochem) 940 (2010) 129-
134.
[24] A. Zeinalinezhad, D. Nori-Shargh, Z. Abbasi-Bakhtiari, J.E. Boggs, J. Mol. Struct. (Theochem) 947
(2010) 52-57.
[25] D. Nori-Shargh, H. Yahyaei, J.E. Boggs, J. Mol. Graph. Model. 28 (2010) 807-813.
[26] K.B. Wiberg, M.A. Murcko, J. Phys. Chem. 91 (1987) 3616-3620.
[27] F. Freeman, A. Phornvoranunt, W.J. Hehre, J. Phys. Org. Chem. 11 (1998) 831-835.
[28] T.M. Gilbert, Tetrahedron Lett. 39 (1998) 9147-9150.
[29] M. Remko, P.D. Lyne, W.G. Richards, Phys. Chem. Chem. Phys. 1 (1999) 5353-5357.
[30] D. Strickland, R.A. Caldwell, J. Phys. Chem. 97 (1993) 13394-13402.
[31] I. Arnason, G.K. Thorarinson, E. Matern, J. Mol. Struct. (Theochem) 545 (1998) 91-102.