Structure-radical scavenging activity relationships of hydroxytoluene derivatives
Subject Areas : Journal of the Iranian Chemical ResearchAdnan Bekhit 1 , Baye Akele 2 , Ariaya Hymete 3
1 - Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, Addis Ababa
1176, Ethiopia
2 - Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, Addis Ababa
1176, Ethiopia
3 - Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, Addis Ababa
1176, Ethiopia
Keywords: Hydroxytoluenes, Radical scavenging activity, Enthalpy, Spin distribution, ΔH2,
Abstract :
Research works proposed that radical scavenging activity of flavonoids is due to ring B, andthe remaining part of the molecule can be disregarded. Thus the objective of this work is toobserve whether hydroxytoluenes account the radical scavenging activity of flavonoid and toestablish structural requirements for their activity (as they showed appreciable activity) andelucidate a comprehensive mechanism that can explain their activity and termination. Thus, theradical-scavenging activity of nine hydroxytoluene derivatives against 2,2-diphenyl-1-picrylhydrazyl, DPPH was determined. The relative change in energy (ΔHf) associated with theformation of phenolic radicals and the spin distributions in these radicals were determined usingcomputational programs (Density function theory and Hartree Fock). By correlatingexperimental data with ΔHf, the most active compounds and structural features that areresponsible for their activities were identified. Reaction product of 4-methyl catechol with 2,2-diphenyl-1-picrylhydrazyl, DPPH was isolated and characterized in order to unravel themechanism of termination of most active hydroxytoluenes. Termination enthalpy (ΔH2) ofmethyl-catechols and methyl-hydroquinone, once the termination mechanism explained, wascalculated to understand its role in the radical scavenging activity.
[1] H.Y. Zhang, Cur. CADD 1 (2005) 257-272.
[2] S.H. Pine, Organic chemistry. 5th edition, Tata-McGram –Hill Publishing Company Ltd., New Delhi,
India, 2006.
[3] http://en.wikipedia.org/wiki/Radical_(chemistry) /accessed on Nov.2, 2009.
[4] V. Butkovicä, L. Klasinc, W. Bors, J. Agric. Food Chem. 52 (2004) 2816-2820.
[5] C. Guohua, S. Emin, L. Ronald, Free Radic. Biol. Med. 22 (1997) 749-760.
[6] D.I. Tsimogiannis, V. Oreopoulou, Innov. Food Sci. Emerg. Tech. 7 (2006) 140-146.
[7] D. Amić, S. Davidovi, N.Trinajsti, Chem. Acta, 76 (2003) 55-65.
[8] W. Bors, C. Michel, K. Stettmaier, Biofactors 6 (1997) 399-402.
[9] B. Stanislaw, O. Wieslaw, J. Agric. Food Chem. 49 (2001) 2774-2779.
[10] A. Francisco, M. Silva, B. Fernanda, G. Carla, J. Agric. Food Chem. 48 (2000) 122-126.
[11] C.G.M. Heijnen, J.A.J.M. Haenen, Environ. Toxicol. Pharmacol. 10 (2001) 199-206.
[12] H. Yu Zhang, Y. Min Sun, D. Zhang, Chin. Chem. Lett. 13 (2002) 531-534.
[13] T.A. Kennedy, D.C. Liebler, J. Biol. Chem. 267 (1992) 4658-4663.
[14] A. Seyoum, K. Asres, F.K. El-Fiky, Photochemistry 67 (2006) 2058-2070.
[15] M. Bruits, K. Asres, F. Bucar, Phytother. Res. 15 (2001) 103-108.
[16] J. Vaya, S. Mahmood, A. Goldblum, M. Aviram, N. Volkova, A. Shaalan, R. Musa, S. Tamir,
Phytochemistry 62 (2003) 89-99.
[17] J.P. Jones, M. Mysinger, K.R. Korzekwa, Drug Metab. Dispos. 30 (2002) 7-12.
[18] H. Hussain, G. Babic, T. Durst, S. James, M. Flueraru, A. Chichirau, C. Leonid, J. Org. Chem. 68
(2003) 7023-7032.
[19] D.I. Tsimogiannis, V. Oreopoulou, Innov. Food Sci. Emerg. Tech. 5 (2004) 523-528.
[20] K. Ikihir, D. Boureima, B. Dabkoulodo, Int. J. Pharmacog. 4 (1992) 251-262.
[21] R. Gažák, P. Sedmera, M. Vrbacký, J. Vostálová, Z. Drahota, P. Marhol, D. Walterová, K. Vladimír,
Free Radi. Biol. Med. (2009) 745-752.
[22] G. Glässer, E.U. Graefe, F. Struck, M. Veit, R. Gebhardt, Phytomedicine 9 (2002) 33-40.
[23] G. Litwinienko, K. Ingold, J. Org. Chem. 68 (2005) 7023-7032.
[24] P. Molyneux, Songklanakarin J. Sci. Technol. 26 (2004) 211-219.
[25] D. Huang, O. Boxin, L. Ronald, J. Agric. Food Chem. 53 (2005) 1841-1856.
[26] C.G. Heijnen, G.R. Haenen, F.A. van Acker, W.J. van der Vijgh, A. Bast, Toxicol. In Vitro 15
(2001) 3-6.
[27] E. Middleton, C. Kandaswami, T.C. Theoharides, Pharmacol. Rev. 52 (2000) 673-684.
[28] L.F. Wang, H.Y. Zhang, Bioorg. Med. Chem. Lett. 14 (2004) 2609-2611.
[29] S.A. Van Acker, M.J. de Groot, D.J. van den Berg, M.N. Tromp, G. Donne´-Op den Kelder, W.J.
van der Vijgh, A. Bast, Chem. Res. Toxicol 9 (1996) 1305-1312.
[30] O. Dangles, G. Fargeix, C. Dufour, J. Chem. Soc. Perkin Trans. 2 (2000) 1653-1663, K.
Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modeling:
Principles and Applications, 1st edition, Springer, India, 2008, B. Rasulev, N. Abdullaevb, V. Syrovb,
J. Leszczynskia, Qsarcomb. Sci. 24 (2005) 1056-1065.
[31] J. Foresm, A. Fris, Exploring Chemistry with Electronic Structure Method, 2nd edition, Gaussian
Publisher, Gaussian Publisher,USA, 2004.
[32] V. Thavasi, L.P. Leong, R.P. Bettens, J. Phys. Chem. 110 (2006) 4918-4923.
[33] M. Foti, G. Ruberto, J. Agric. Food Chem. 49 (2001) 342-345.
B. Akele & et al. / J. Iran. Chem. Res. 3 (2010) 141-153
153
[34] H.Y. Zhang, Y.M. Sun, L.F. Wang, Chin. Chem. Lett. 14 (2003) 209-221.
[35] K. Lemanska, W. Vander, H. Szymusiak, M. Boersma, A. Gliszczynska, M.Rietjens, B. Tyrakowska,
Free Radic.Res., 38 (2004) 639-647.
[36] O. Dangles, G. Fargeix, C. Dufour, J. Chem. Soc. Perkin Trans. 65 (1999) 1387-1395.
[37] S. Terauchi, N, Tomihiro, T. Yamamura, K. Nishiwaki, Y. Tanigakin, Bull. Chem. Soc. Jpn. 68
(2006) 2955-2960.
[38] C. Henriquez, C. Aliaga, E. Lissi, J. Chil. Chem. Soc. 49 (2004) 225-265.
[39] C. Sa´nchez-Moreno, Food Sci.Tech. Int. 8 (2002) 121-137.
[40] D. Amić, D. Davidović-Amić, D. Bešlo, V. Rastija, B. Lučić, N. Trinajstić, Current Med. Chem. 14
(2007) 827-845.
[41] A.S. Pannala, T.S. Chan, P.J. O’Brien, C.A. Rice-Evans, Biochem. Biophys. Res. Commun. 282
(2001) 1161-1168.