تولید امولسیونهای لیکوپن با استفاده از ژلاتین و مالتودکسترین و بهینه سازی فرآیند با بهکارگیری روش سطح پاسخ
محورهای موضوعی : میکروبیولوژی مواد غذاییآزاده سلیمی 1 * , یحیی مقصودلو 2 , سید مهدی جعفری 3 , علیرضا صادقی ماهونک 4 , مهدی کاشانی نژاد 5 , امان محمد ضیایی فر 6
1 - استادیار گروه علوم و صنایع غذایی، دانشگاه سمنان، سمنان، ایران
2 - دانشیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - استادیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 - دانشیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
5 - دانشیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
6 - استادیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: امولسیون لیکوپن, پایداری, روش سطح پاسخ, ژلاتین, مالتودکسترین,
چکیده مقاله :
مقدمه: لیکوپن رنگدانه ای مفید برای بدن است اما به دلیل آسیب پذیری بالا در برابر شرایط محیطی، کاربرد آن در صنعت محدود شده است. برای رفع این مشکل می توان از روش هایی مانند ریزپوشانی لیکوپن استفاده کرد. گام اول بدین منظور، تهیه امولسیونی با بالاترین پایداری میباشد لذا هدف از این تحقیق، بهینه سازی شرایط تولید امولسیون ها با استفاده از روش سطح پاسخ بود. مواد و روشها: بر اساس روش سطح پاسخ، هجده امولسیون با سه متغیر مستقل شامل سرعت هموژنایزر، مقدار لیکوپن و مقدار ژلاتین + مالتودکسترین تهیه شدند. ابتدا لیکوپن در روغن سویا حل شد تا به محلول 5% (وزنی- وزنی) لیکوپن برسیم، ژلاتین و مالتودکسترین نیز در آب حل شده و به نسبت 1 به 19 با هم ترکیب شدند. سپس لیکوپن، با استفاده از هموژنایزر در مخلوط ژلاتین + مالتودکسترین پخش شد. پس از تولید، پایداری امولسیونها از طریق اندازهگیری ویسکوزیته، اندیس کرمی شدن و اندازه قطرات بررسی شد. یافتهها: سرعت هموژنایزر، مقدار لیکوپن و مقدار ژلاتین+مالتودکسترین تاثیر معنی داری بر اندازه قطرات امولسیون، ویسکوزیته و اندیس کرمی داشتند. مدل درجه دو به خوبی توانست تغییرات اندازه قطرات در امولسیون را بیان کند و در مورد ویسکوزیته و اندیس کرمی شدن، این مدلهای خطی بودند که به خوبی با داده ها همبستگی داشتند. نتیجهگیری: برای تولید بهترین امولسیون با پایداری بالا، لازم است مقدار 28/35% وزنی- وزنی ژلاتین + مالتودکسترین با 07/18% وزنی-وزنی لیکوپن درهموژنایزری با سرعت 18000 دور در دقیقه امولسیون شوند.
Introduction: Lycopene is a useful natural pigment however it is quite unstable due to thepresence of conjugated double bonds in its structure. A useful method to protect lycopeneagainst environmental conditions such as oxygen is microencapsulation. The first step is tohave proper microcapsules by preparing a stable emulsions of lycopene. Therefore the objectof this study is to develop a RSM-based optimization technique to improve the stability oflycopene emulsion by natural biopolymers and to obtain the optimum operating conditions.Materials and Methods: According to the Response Surface Methodology (RSM) design,eighteen emulsions were prepared. Lycopene was dissolved in soybean oil to prepare asolution of 5%w/w lycopene in oil. maltodextrin was dissolved in water and kept overnight.Gelatin was dissolved in hot water and added to rehydrated maltodextrin at the ratio of 1:19.Then lycopene was mixed gradually in gelatin and maltodextrin solution by using rotor statorhomogenizer the stability of the emulsion was investigated by monitoring droplet size,viscosity and creaming index.Results: Homogenization speed, lycopene content and gelatin and maltodextrin concentrationhad significant effects on droplet size, creaming index and viscosity of the emulsions. Thequadratic model was sufficient to describe and predict the responses of droplet size but for theviscosity and creaming index, the linear models were proper and suitable.Conclusion: The graphical optimization method was adapted to find the best emulsifyingconditions and it was predicted that the homogenization speed of 18000 rpm, lycopenecontent of 18.07w/w and gelatin and maltodextrin concentration of 35.28% w/w would be theoptimum conditions for preparing lycopene emulsion.
Boom, R. M. (2008). Food material science, Emulsions: Principles and Preparation, 1th ed. New York: Springer, pp. 305-339
Chanamai, R. & McClements, D. J. (2001). Prediction of emulsion color from droplet characteristics: dilute monodisperse oil-in-water emulsions. Food Hydrocolloids, 15, 83-91.
Daik, R., Bidol, S. & Abdullah, I. (2007). Effect of molecular weight on the droplet size and rheological properties of liquid natural rubber emulsion. Malaysian Polymer Journal (MPJ), 2 (1), 29-38.
Dluzewska, E., Stobiecka, A. & Maszewska, M. (2006). Effect of oil phase concentration on rheological properties and stability of beverage emulsions. ACTA Scientiarum Polonorum Technologia Alimentaria, 5(2), 147-156.
Gardouh, A. R., Ghorab, M. M. & Abdel-Rahman, S. G. S. (2012). Effect of Viscosity, Method of Preparation and Homogenization Speed on Physical Characteristics of Solid Lipid Nanodroplets. ARPN Journal of Science and Technology, 2(10), 966-1006.
Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M. & Ghasemlou, M. (2012). Response surface modeling for optimization of formulation variables and physical stability
assessment of walnut oil in-water beverage emulsions. Food Hydrocolloids, 26, 293-301.
Haznedar, S. & Dortunc, B. (2004). Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. International Journal of Pharmacology and Pharmaceutical Sciences,269 (1), 131-140.
Huang, X., Kakuda, Y. & Cui, W. (2001). Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids, 15, 533-542.
Ilia Anisa, A. N., Nour, & A.H. (2010). Effect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study. World Academy of Science, Engineering and Technology, 38, 691-694.
Jafari, S. M., Beheshti, P. & Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. Journal of Food Engineering, 109, 1–8.
Jafari, S. M., Assadpoor, E., He, Y. & Bhandari, B. (2008). Encapsulation efficiency of food flavors and oils during spray drying. Drying Technology, 26(7), 816-835.
Jafari, S. M., He, Y. & Bhandari, B. (2007a). Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 40, 862–873.
Jafari, S. M., He, Y. & Bhandari, B. (2007b). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82, 478–488.
Klein, M., Aserin, A., Svitov, I. & Garti, N. (2010). Enhanced stabilization of cloudy emulsions with gum arabic and whey protein isolate. Colloids and Surfaces B. Journal of Bio interfaces, 77(1), 75-81.
Lee, M. T. & Chen, B. H. (2002). Stability of lycopene during heating and illumination in a model system. Food Chemistry, 78, 425–432.
Li, J. L., Cheng, Y. Q., Wang, P., Zhao, W. T., Yin, L. J. & Saiyo, M. (2012). A novel improvement in whey protein isolates emulsion stability: generation of an enzymatically cross-linked beet pectin layer using horseradish peroxidase. Food Hydrocolloids, 26, 448–455.
Mehnert, W. & Mader, K. (2001). Solid lipid nanodroplets: production, characterization and applications. Advanced Drug Delivery Reviews, 47, 165–196.
McClements, D. J. (2005). Food emulsions: Principles, practice, and techniques. 2nd ed. BocaRaton, FL: CRC Press, Pp 609
Pesek, C. A. & Warthesen, J. J. (1987). Photodegradation of carotenoids in vegetable juice system. Journal of Agriculture and Food Chemistry, 52, 744–746.
Quanhong, L. & Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92, 701–706.
Quemada, D. & Berli, C. (2002). Energy of interaction in colloids and its implications in rheological modeling. Journal of Colloid and Interface Sciences, 98, 51-85.
Rocha, G. A., Trindade, C. S. F. & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and Bio products processing, 90: 37-42.
Rodea-González, D. A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M. E., Vernon-Carter, E. J. & Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 111(1): 102-109.
Shu, B., Yu, W., Zhao, Y. & Liu, X. (2006). Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering , 76, 664-669.
Sun, X. D. & Arntfield, S. D. (2012). Gelation properties of myofibrillar/pea protein mixtures induce by transglutaminase crosslinking. Food Hydrocolloids, 27, 394-400.
Sun, C., Gunasekaran, S. & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21, 555-564.
Taherian, A. R., Britten, M., Sabik, H. & Fustier, P. (2011). Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids, 25, 868-878.
Tcholakova, S., Denkov, N. D. & Danner, T. (2004). Role of Surfactant Type and Concentration for the Mean Drop Size during Emulsification in Turbulent Flow. Langmuir, 20, 7444-7458.
Ushikubo, F. Y. & Cunha, R. L. (2014). Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocolloids, 34, 145-153.
Watson, D. J. & Mackle, M. R. (2002). The rheology of aqueous emulsions prepared by direct emulsification and phase inversion from a high viscosity alkyd resin. Colloids and Surfaces a Physicochemical and Engineering Aspects, 196, 121–134.