بررسی اثر فرایند بر احتمال تشکیل و میزان اکریل آمید در محصولات خط تولید شکر از چغندرقند
محورهای موضوعی : میکروبیولوژی مواد غذاییفایزه صحرائی 1 , مسعود هنرور 2 * , محمد عرفان بهرامی 3
1 - دانشجوی کارشناسی ارشد علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران
3 - دانش آموخته دکتری علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آسپاراژین, اکریل آمید, شربت غلیظ, شکر,
چکیده مقاله :
مقدمه: اکریل آمید یک ترکیب سرطان زا است که از واکنش بین اسیدهای آمینه با قندهای احیا کننده به عنوان ترکیبات کربونیل در حین واکنش میلارد تشکیل می شود. صنایع تولید قند و شکر به دلیل وسعت تولید و اهمیت بالای فرآورده نهایی و کاربردهای گسترده شکر در محصولات غذایی مختلف، به علت حضور پیش سازهای اولیه و شرایط بهینه، می تواند یکی از پتانسیل های تشکیل اکریل آمید باشد. هدف ازاین پژوهش بررسی احتمال تشکیل اکریل آمید در طی فرایند تولید شکر از چغندرقند بوده است. مواد و روش ها: در این تحقیق به منظور سنجش وجود اکریل آمید، از نمونه های مختلف کارخانه قند اعم از شربت خام حاصل از چغندرقند، شربت رقیق، شربت غلیظ، ملاس و شکر نهایی، در فواصل زمانی ۷ روزه و برای ۳ هفته متوالی نمونه برداری گردید. آزمون های مختلف فیزیکوشیمیایی به منظور سنجش کیفیت هر یک از نمونه ها انجام شد. در نهایت با استفاده از دستگاه کروماتوگرافی مایع با کارایی بالا (HPLC) میزان اکریل آمید هر یک از نمونه ها بررسی و مورد آنالیز قرار گرفت. یافته ها: نتایج نشان داد که نمونه های شربت غلیظ در همه فواصل نمونه برداری حاوی مقادیری از اکریل آمید بودند، اما مقدار این ترکیب سرطان زا در دیگر محصولات کارخانه قند یافت نشد. نتیجه گیری: نتایج این تحقیق نشان داد که اگرچه اکریل آمید در برخی نمونه های شربت غلیظ تا حدود ۸۲۵ نانوگرم بر کیلوگرم نیز یافت شد، اما در شکر نهایی هیچ مقداری از این ترکیب سرطان زا وجود نداشته از این رو نگرانی های مربوط به حضور این ماده در یکی از پرمصرف ترین محصولات غذایی دنیا، یعنی شکر سفید وجود ندارد.
Introduction: Acrylamide is a carcinogenic compound which is formed by reaction between amino acids and reducing sugars. In this study, the possibility of acrylamide formation and different parameters related to sugar processing quality were investigated. Materials and Methods: Different parameters for determination of physicochemical parameters such as pH, ash, brix, invert sugar, polarimetric sugar and color in samples were analyzed. Acrylamide is a carcinogenic compound and is formed from the asparagine amino acid release with reducing sugars as carbonyl compounds during the Maillard reaction. In its formation, several factors such as the concentration of reducing sugars, temperature and time are effective. Results: Due to the danger of acrylamide in human diet and health, it is important to detect this compound during sugar production. The quantity of acrylamide was analyzed in different product produced in the factory, namely sugar beet, raw juice, thin juice, thick juice, molasses, and sugar crystals. The results indicated that the highest amount of acrylamide was found in thick juice samples (825 ng/kg). Conclusion: The results of this study showed that although acrylamide is present in thick juice samples but in the final sugar the quantity of acrylamide is minute. Therefore, there is no concern about acrylamide in relation to sugar intake.
بینام. (۱۳۹7). ماهنامه شکر انجمن صنفی کارخانههای قند و شکر ایران. شماره 181.
بهزاد، خ.، باقرزاده، م. ب. و الهی، م. (1391). دستورالعمل کنترل کیفی آزمایشگاهی در کارخانههای قند. انتشارات دانشگاه فردوسی مشهد؛ شماره 602.
متقی، م، م.، سیدین اردبیلی، م.، هنرور، م.، مهربانی، م. و باقیزاده، الف. (1391). تعیین اکریل آمید در نانهای مسطح سنتی شهرستان کرمان به روش LC/DAD و مطالعه تاثیر عصاره رزماری بر تشکیل آن. مجله نوآوری در علوم و فناوری غذایی، سال 4، شماره 4.
Asadi, M. (2006). Beet sugar handbook: John Wiley & Sons.
Attoff, K., Kertika, D., Lundqvist, J., Gredsson, S. & Fors, A. (2016). Acrylamide affects proliferation and differentiation of the heural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y. Toxicology in Vitro, 35, 100-111.
Becalski, A., Lau, B. P. Y., Lewis, D. & Seaman, S. W. (2003). Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51(3), 802-808.
Biedermann, M. (2002). Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene,93, 668-687.
Coca, M., Garcla, T., Gonzalez, G., Pena, M. & Garcla, J. A. (2003). Study of coloured components formed in sugar beet processing. Food Chemistry, 86, 421-433.
Dybing, E., Farmer, P. B., Ahdersen, M., Fennell, T. R., Lalljie, S. P. D., Muller, D. J.
G., Olin, S., Petersen, B. J., Schlatter, J., Scholz, G., Scimeca, J. A. & Verger, P. (2004). Human exposure and internal does assessments of acrylamide in food. Food and Chemical Toxicology, 43, 365-410.
Jensen, B. B., Lennox, M., Granby, K., & Adler-Nissen, J. (2008). Robust modelling of heat-induced reactions in an industrial food production process exemplified by acrylamide generation in breakfast cereals. Food and Bioproducts Processing, 86(3), 154-162.
Knol, J. J. (2008). Kinetic modeling of acrylamide formation in aqueous reaction systems and potato crisps: Text & Figures.
Mastovska, K. & Lehotay, S. J. (2006). Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices. Journal of Agricultural and Food Chemistry, 54, 7001-7008.
Mudoga, H. L., Yucel, H. & Kincal, N. S. (2007). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 99, 3528-3533.
Muttucumaru, N., Powers, S. J., Elmore, J. S., Dodson, A., Briddon, A., Mottram, D. S., & Halford, N. G. (2017). Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chemistry, 220, 76-86.
Nguyen, H. T. & Boekel, M. A. J. S. (2017). Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 230, 14-23.
Pedreschi, F., Leon, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K. & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786-793.
Rice, J. M. (2004). The carcinogenicity of acrylamide. Mutation Research, 580, 3-20.
Surdyk, N., Rosén, J., Andersson, R., & Åman, P. (2004). Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry, 52(7), 2047-2051.
Serpen, A. & Gokmen, V. (2008). Evaluation of the maillard reaction in potato crisps by Journal Food Composition and Analysis, 22, 589-595.
Vinci, R. M., Mestdagh, F. & Meulenaer, B. D. (2012). Acrylamide formation in fried potato products-present and future, acritical review on miting gation strategies. Food Fhemistry, 133, 1138-1154
Wojtczak, M. (2003). ICUMSA-International Commission for Uniform Methods of Sugar Analysis. Gazeta Cukrownicza, 6 (111), 191-192.
_||_بینام. (۱۳۹7). ماهنامه شکر انجمن صنفی کارخانههای قند و شکر ایران. شماره 181.
بهزاد، خ.، باقرزاده، م. ب. و الهی، م. (1391). دستورالعمل کنترل کیفی آزمایشگاهی در کارخانههای قند. انتشارات دانشگاه فردوسی مشهد؛ شماره 602.
متقی، م، م.، سیدین اردبیلی، م.، هنرور، م.، مهربانی، م. و باقیزاده، الف. (1391). تعیین اکریل آمید در نانهای مسطح سنتی شهرستان کرمان به روش LC/DAD و مطالعه تاثیر عصاره رزماری بر تشکیل آن. مجله نوآوری در علوم و فناوری غذایی، سال 4، شماره 4.
Asadi, M. (2006). Beet sugar handbook: John Wiley & Sons.
Attoff, K., Kertika, D., Lundqvist, J., Gredsson, S. & Fors, A. (2016). Acrylamide affects proliferation and differentiation of the heural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y. Toxicology in Vitro, 35, 100-111.
Becalski, A., Lau, B. P. Y., Lewis, D. & Seaman, S. W. (2003). Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51(3), 802-808.
Biedermann, M. (2002). Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene,93, 668-687.
Coca, M., Garcla, T., Gonzalez, G., Pena, M. & Garcla, J. A. (2003). Study of coloured components formed in sugar beet processing. Food Chemistry, 86, 421-433.
Dybing, E., Farmer, P. B., Ahdersen, M., Fennell, T. R., Lalljie, S. P. D., Muller, D. J.
G., Olin, S., Petersen, B. J., Schlatter, J., Scholz, G., Scimeca, J. A. & Verger, P. (2004). Human exposure and internal does assessments of acrylamide in food. Food and Chemical Toxicology, 43, 365-410.
Jensen, B. B., Lennox, M., Granby, K., & Adler-Nissen, J. (2008). Robust modelling of heat-induced reactions in an industrial food production process exemplified by acrylamide generation in breakfast cereals. Food and Bioproducts Processing, 86(3), 154-162.
Knol, J. J. (2008). Kinetic modeling of acrylamide formation in aqueous reaction systems and potato crisps: Text & Figures.
Mastovska, K. & Lehotay, S. J. (2006). Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices. Journal of Agricultural and Food Chemistry, 54, 7001-7008.
Mudoga, H. L., Yucel, H. & Kincal, N. S. (2007). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 99, 3528-3533.
Muttucumaru, N., Powers, S. J., Elmore, J. S., Dodson, A., Briddon, A., Mottram, D. S., & Halford, N. G. (2017). Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chemistry, 220, 76-86.
Nguyen, H. T. & Boekel, M. A. J. S. (2017). Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 230, 14-23.
Pedreschi, F., Leon, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K. & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786-793.
Rice, J. M. (2004). The carcinogenicity of acrylamide. Mutation Research, 580, 3-20.
Surdyk, N., Rosén, J., Andersson, R., & Åman, P. (2004). Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry, 52(7), 2047-2051.
Serpen, A. & Gokmen, V. (2008). Evaluation of the maillard reaction in potato crisps by Journal Food Composition and Analysis, 22, 589-595.
Vinci, R. M., Mestdagh, F. & Meulenaer, B. D. (2012). Acrylamide formation in fried potato products-present and future, acritical review on miting gation strategies. Food Fhemistry, 133, 1138-1154
Wojtczak, M. (2003). ICUMSA-International Commission for Uniform Methods of Sugar Analysis. Gazeta Cukrownicza, 6 (111), 191-192.