تولید پروتئین هیدرولیزشده قارچ خوراکی با استفاده از آنزیمآلکالاز: بررسی تاثیر زمان هیدرولیز و غلظت پروتئین هیدرولیزشده بر قابلیت آنتیاکسیدانی آن
محورهای موضوعی : شیمی مواد غذایی-آنتی اکسیدان هاآیسان ایزانلو 1 , علیرضا صادقی ماهونک 2 * , هدی شهیری طبرستانی 3 , شیما کاوه 4
1 - دانشجویکارشناسی ارشد، گروه علوم وصنایعغذایی، دانشگاه علوم کشاورزی و منابع طبیعیگرگان، گرگان، ایران
2 - استاد، گروه علوم وصنایعغذایی، دانشگاه علوم کشاورزی و منابع طبیعیگرگان، گرگان، ایران.
3 - استادیار،گروه علوم و صنایعغذایی، دانشگاه علوم کشاورزی و منابع طبیعیگرگان، گرگان، ایران.
4 - دانشجوی دکتری، گروه علوم و صنایعغذایی، دانشگاه علوم کشاورزی و منابع طبیعیگرگان، گرگان، ایران.
کلید واژه: قارچ خوراکی, خصوصیات آنتیاکسیدانی, زمان هیدرولیز, هیدرولیزآنزیمی, پروتئین هیدرولیزشده,
چکیده مقاله :
بهدلیل نگرانیهایی که در مورد ایمنی و سلامت آنتیاکسیدانهای سنتزی مانند BHT و BHA وجود دارد کاربرد ترکیبات طبیعی با ویژگی آنتیاکسیدانی، نظیر پپتیدهای زیستفعال مورد توجه بسیاری از محققین قرار گرفته است. هدف این پژوهش تعیین زمان مناسب هیدرولیز پروتئین پودر قارچ دکمهای (Agaricus bisporus) با آنزیم آلکالاز بهمنظور تولید پروتئین هیدرولیزشده با خواص آنتیاکسیدانی بالا بود. جهت انجام این پژوهش ابتدا قارچ خوراکی بهپودر تبدیل گردید و سپس عمل هیدرولیز در طی زمانهای200،150،100،50 و250 دقیقه با نسبت به آنزیم به سوبسترا 2% و در دمای 50 درجهسانتیگراد صورت گرفت و تیمار مناسب براساس اندازهگیری قابلیت آنتیاکسیدانی نمونه تولیدی تعیین گردید. نتایج نشان داد که زمان 200 دقیقه جهت رسیدن به حداکثر خاصیت آنتیاکسیدانی مناسب میباشد. در مرحله بعد تاثیر غلظتهای مختلف پروتئین هیدرولیز شده در شرایط بهینه (10 تا 50 میلیگرم برمیلیلیتر) بر روی خصوصیات آنتیاکسیدانی محصول تولیدی در مقایسه با اسید آسکوربیک (با غلظت 50 میلیگرم بر میلیلیتر) مورد بررسی قرار گرفت. در تمامی آزمونهای مورد بررسی محصول تولیدی رفتاری وابسته به غلظت از خود نشان داد و با افزایش غلظت میزان مهار رادیکال آزاد DPPH، قدرت احیاء یون آهن و قدرت آنتیاکسیدانیکل افزایش یافت و در غلظتهای 40 و 50 میلیگرم بر میلیلیتر مشابه با اسید آسکوربیک (50 میلیگرم بر میلیلیتر) بود. نتایج نشان داد که پروتئین هیدرولیز شده تولیدی پتانسیل مناسبی جهت استفاده بهعنوان یک افزودنی فراسودمند و بهعنوان جایگزین آنتیاکسیدانهای سنتزی در فرمولاسیونهای غذایی دارد.
Due to concerns about the safety and long-term health of synthetic antioxidants such as BHT and BHA, the use of natural compounds with antioxidant properties, such as bioactive peptides, has attracted the attention of many researchers. The aim of this study was to determine the optimum hydrolysis time of edible mushroom protein (Agaricus bisporus) with alcalase enzyme to produce protein hydrolyzate with high antioxidant properties. For this study, first edible mushrooms were converted into powder and then was hydrolyzed in different times of 200, 150, 100, 50 and 250 minutes with an enzyme to substrate of 2% at temperature of 50 °C and then appropriate treatment based on antioxidant properties of the produced sample was determined. The results showed that hydrolysis time 200 minutes is suitable to achieve maximum antioxidant properties. Next, the effect of different concentrations (10 to 50 mg/ml) of hydrolyzed protein prepared under optimal conditions on the antioxidant properties of the product compared to ascorbic acid (50 mg/ml) was investigated. In all the tests, the product showed a concentration-dependent behavior and with increasing concentration, the DPPH free radical scavenging, iron ion reduction power and total antioxidant power increased and in concentrations of 40 and 50 mg/ml the antioxidant power was similar to ascorbic acid (50 mg/ml). The results showed that the hydrolyzed protein produced has the potential to be used as a functional ingredient and as an alternative to synthetic antioxidants in food formulations.
1. پدرام نیا، ا، مرتضوی, ع، صادقی ماهونک، ع، الهامیراد، ا، و آرمین، م، 1396. بهینه¬سازی تولید پروتئین هیدرولیز شده دانه هندوانه
(Citrullus lanatus)با ارزیابی فعالیت چلات کنندگیبا استفاده از روش سطح پاسخ. نوآوری در علوم و فناوریغذایی، 9(4)، صص.133-123.
2. سلمانیان، ش، صادقی ماهونک, ع، خمیری، ماستری فراهانی، م، 1392. اسیدهای فنولی، فعالیت ضد رادیکالی و ضد میکربی عصاره متانولی برگهای اوجی. مجله علوم تغذیه و صنایع غذایی ایران 8(2)، صص.154-145.
3. Ahmadi, F., Kadivar, M. and Shahedi, M., 2007. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chemistry, 105(1), pp. 57-64.
4. Arabshahi-Delouee, S. and Urooj, A., 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102(4), pp.1233-1240.
5. Association of Official Agricultural Chemists .,1975. Official methods of analysis (Vol. 222). Washington, DC: Association of Official Analytical Chemists.
6. Batista, I., Ramos, C., Coutinho, J., Bandarra, N.M. and Nunes, M.L., 2010. Characterization of protein hydrolysates and lipids obtained from black scabbard fish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process biochemistry, 45(1), pp.18-24.
7. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), pp.1198-1205.
8. Blanca, H. L., Ana, Q., Lourdes, A., and Isidra, R., 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17, pp. 42–49.
9. Chi, C.F., Hu, F.Y., Wang, B., Li, T. and Ding, G.F., 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, pp. 301-313.
10. Cumby, N., Zhong, Y., Naczk, M. and Shahidi, F., 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), pp.144-148.
11. E Silva, F.G.D., Hernández-Ledesma, B., Amigo, L., Netto, F.M. and Miralles, B., 2017. Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT-Food Science and Technology, 76, pp. 140-146.
12. Guimaraes, F., and Maria, F., 2017. Identification of peptides released from Flaxseed (linum Usitatissimum) protein by alcalase® hydrolysis: antioxidant activity. LWT-Food Science and Technology, 76, pp.140-146
13. He, J.Z., Ru, Q.M., Dong, D.D. and Sun, P.L., 2012. Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules, 17(4), pp. 4373-4387.
14. Hernandez-Ledesma, B., Quiros, A., Amigo, L. and Recio, I., 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1), pp. 42-49.
15. Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A., 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), pp.178-184.
16. Janakat, S., Al‐Fakhiri, S. and Sallal, A. K., 2004. A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological
Evaluation of Natural Product Derivatives, 18(10), pp.810-813.
17. Je, J.Y., Lee, K.H., Lee, M.H. and Ahn, C.B., 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), pp.1266-1272.
18. Khantaphant, S., Benjakul, S. and Ghomi, M.R., 2011. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brown stripe red snapper (Lutjanus vitta). LWT-Food Science and Technology, 44(4), pp.1139-1148.
19. Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y. and Schwartz, B.,2012. Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. Journal of Gastroenterology, 47(5), pp.504-518.
20. Li, B., Chen, F., Wang, X., Ji, B. and Wu, Y., 2007. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry, 102(4), pp.1135-1143.
21. Li, Y., Jiang, B., Zhang, T., Mu, W. and Liu, J., 2008. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106(2), pp.444-450.
22. Matthäus, B., 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50(12), pp. 3444-3452.
23. Nourmohammadi, E. and Sadeghi Mahoonak, A. R., 2019. Health implications of bioactive peptides: A Review. International Journal for Vitamin and Nutrition Research, 88 (5), pp. 319-343.
24. Oboh, G. and Shodehinde, S.A., 2009. Distribution of nutrients, polyphenols and antioxidant activities in the pilei and stipes of some commonly consumed edible mushrooms in Nigeria. Bulletin of the Chemical Society of Ethiopia, 23(3), pp.391-398.
25. Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), pp.238-242.
26. Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), pp. 337-341.
27. Rajapakse, N., Mendis, E., Byun, H.G. and Kim, S.K., 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9), pp.562-569.
28. Saito, K., Jin, D.H., Ogawa, T., Muramoto, K., Hatakeyama, E., Yasuhara, T. and Nokihara, K., 2003. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 51(12), pp.3668-3674.
29. Sun, Q., Shen, H. and Luo, Y., 2011. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of Food Science and Technology, 48(1), pp.53-60
30. Umayaparvathi, S., Meenakshi, S., Vimalraj, V., Arumugam, M., Sivagami, G. and Balasubramanian, T., 2014. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4(3), pp.343-353.
31. Wu, H.C., Chen, H.M. and Shiau, C.Y., 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber
austriasicus). Food Research International, 36(9-10), pp.949-957.
32. Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2), pp. 370-376.
33. Yıldırım, A., Mavi, A., Oktay, M., Kara, A.A., Algur, Ö.F. and Bilaloǧlu, V., 2000. Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry, 48(10), pp. 5030-5034.
34. You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B., 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), pp.235-240.
35. Zhao, Q., Xiong, H., Selomulya, C., Chen, X.D., Zhong, H., Wang, S., Sun, W. and Zhou, Q., 2012. Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry, 134(3), pp.1360-1367.
36. Zhu, L., Chen, J., Tang, X. and Xiong, Y. L., 2008. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), pp. 2714-2721.