ارائه مدلی جهت انتخاب پرتفوی بهینه در شرایط عدم اطمینان با استفاده از مدل میانگین-شانس (رویکرد آیندهنگر تخمین تابع بازدهی)
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارحسین دیدهخانی 1 * , امیر شیری قهی 2 , بهزاد میران 3
1 - استادیار گروه مهندسی مالی، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران.
2 - گروه مدیریت مالی، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران
3 - دانش آموخته کارشناسی ارشد مهندسی مالی، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران
کلید واژه: بهینهسازی سبد سهام, مدل میانگین-شانس, تئوری عدم اطمینان,
چکیده مقاله :
هدف از این پژوهش ارائه مدل بهینهسازی پرتفوی در چارچوب تئوری عدم اطمینان میباشد. جهت تخمین نرخ بازدهی داراییها از رویکرد آیندهنگر مبتنی بر نظرات خبرگان استفاده شد. همچنین از یک معیار ریسک متفاوت مبتنی بر عدم قطعیت (مدل شانس) جهت مدلسازی ریسک استفاده گردید. تئوری مورد استفاده جهت مدلسازی عدم قطعیت موجود در پارامترهای مدل، تئوری عدم اطمینان میباشد. تیم خبرگان حاضر در این تحقیق جهت تکمیل اطلاعات مورد نیاز در خصوص پیشبینیهای مورداستفاده، شامل 30 مدیر سبد صندوقهای سرمایهگذاری فعال در بورس اوراق بهادار تهران می باشند. در پایان جهت نمایش قابلیت کاربرد، مدل طراحیشده در بورس اوراق بهادار تهران بهکارگیری و با توجه به ماهیت غیرخطی مدل، از روش فرا ابتکاری الگوریتم ژنتیک جهت حل آن استفاده گردید. درنهایت با تولید پرتفو های تصادفی و مقایسه آن با پرتفوی بهینه حاصل از حل مدل به این نتیجه رسیدیم که پرتفوی بهینه ضمن عملکرد بهتر به سطح بالاتری از بازدهی نیز دست پیدا میکند.
The purpose of this research is to present a portfolio optimization model within the framework of uncertainty theory. To estimate the return on assets, a prospective approach was used based on expert opinions. Also, a different risk-based approach based on uncertainty (chance model) was used to model risk. The theory used to model the uncertainty in model parameters is the uncertainty theory. The team of experts involved in this research was required to complete the required information on the projections used, including 30 managers of the portfolio of active investment funds in the Tehran Stock Exchange. In the end, to demonstrate the applicability, the model was designed in Tehran Stock Exchange and according to the nonlinear nature of the model, the hyper bacterial method of the genetic algorithm was used to solve it. Finally, by generating randomized portfolios and comparing them with the optimal portfolio for solving the model, we conclude that the optimized portfolio achieves a higher level of efficiency while delivering better performance.
* ابراهیمی, سیدبابک, جیرفتی, امیرسینا, عبدی, متین. (1397). بهینهسازی سبد سرمایهگذاری تحت نظریه اعتبار فازی با استفاده از مدل میانگین-ارزش در معرض ریسک مشروط. دانش مالی تحلیل اوراق بهادار, 11(37), 17-27.
* -دیده خانی حسین ، حجتی استانی سعید. (1395). ارائه مدل برنامه ریزی چندهدفه جهت انتخاب سهام با در نظرگرفتن ارزش در معرض خطر فازی: رویکرد تئوری اعتبار فازی. مهندسی مالی و مدیریت اوراق بهادار, 8(32), 239-268.
* رستمی، محمدرضا؛ کلانتری بنجار، محمود و بهزادی، عادل. (1394)، گشتاورهای مراتب بالاتر در بهینه سازی سبد سهام در محیط فازی، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره 24 ، 61-41.
* شیری قهی, امیر, دیده خانی, حسین, خلیلی, کاوه, سعیدی, پرویز. (1396). مطالعه تطبیقی مدل بهینهسازی پرتفوی چند دورهای چندهدفه در محیط اعتبار فازی با معیارهای متفاوت ریسک. راهبرد مدیریت مالی, 5(3), 1-26.
* DeMiguel, V., Mei, X., & Nogales, F. J. (2016). “Multiperiod portfolio optimization with multiple risky assets and general transaction costs”. Journal of Banking & Finance, 69, 108-120.
* Liu, Y. J., & Zhang, W. G. (2015). “A multi-period fuzzy portfolio optimization model with minimum transaction lots”. European Journal of Operational Research, 242(3), 933-941.
* Alexander G.J., & Baptista A.M. (2011). Portfolio selection with mental accounts and delegation. Journal of Banking & Finance, 35, 2637-2656.
* Baptista A.M. (2012). Portfolio selection with mental accounts and background risk. Journal of
* Bhattacharyya, R., Chatterjee, A., & Kar, S. (2013). Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs. Journal of Uncertainty Analysis and Applications, 1(1), 16.
* Chunhachinda, P., Dandapani, K., Hamid, S., & Prakash, A. J. (1997). “Portfolio selection and skewness: Evidence from international stock markets”. Journal of Banking & Finance, 21(2), 143-167.
* Cong, F., & Oosterlee, C. W. (2016). “Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation”. Journal of Economic Dynamics and Control, 64, 23-38.
* Gao Y. (2012). Uncertain Models for Single Facility Location Problems on Networks. Applied Mathematical Modelling , 36, 2592-2599.
* -Goldberg, David,(1989),genetic algorithms in search optimization and machine's learning. Addison-Wesly publishing
* Guo, S., Yu, L., Li, X., & Kar, S. (2016). “Fuzzy multi-period portfolio selection with different investment horizons”. European Journal of Operational Research, 254(3), 1026-1035.
* Huang X. (2011). Mean-risk model for uncertain portfolio selection. Fuzzy Optimization and
* Huang X. (2012a). Mean-variance models for portfolio selection subject to experts’ estimations. Expert Systems with Applications, 39, 5887-5893.
* Huang X. (2012b). A risk index model for portfolio selection with returns subject to experts’ evaluations. Fuzzy Optimization and Decision Making, 11, 451-463.
* Huang, X. (2006). “Fuzzy chance-constrained portfolio selection. Applied mathematics and computation”, 177(2), 500-507.
* Huang, X. (2008). “Mean-entropy models for fuzzy portfolio selection”. IEEE Transactions on Fuzzy Systems, 16(4), 1096-1101.
* Huang, X. (2008). “Risk curve and fuzzy portfolio selection”. Computers & Mathematics with Applications, 55(6), 1102-1112.
* Huang, X. (2010). Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches. Berlin: Springer-Verlag, (Chapter 4).
* Huang, X., Zhao, T. (2015), Mean-chance model for portfolio selection based on uncertain measure. Insurance: Mathematics and Economics (2014), vol 59 pp 243-250
* Jana, P., Roy, T. K., & Mazumder, S. K. (2009). Multi-objective possibilistic model for portfolio selection with transaction cost. Journal of Computational and Applied Mathematics,228(1), 188-196.
* Katagiri, H., & Ishii, H. (1999). Fuzzy portfolio selection problem. In Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. Vol. 3, pp. 973-978
* Konno, H., & Yamazaki, H. (1991). “Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market”. Management science, 37(5), 519-531.
* Liu, B. (2007). Uncertainty Theory. (2nd ed.). Berlin: Springer-Verlag
* Liu, B. (2010). Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Berlin: Springer-Verlag,
* Liu, Y.-J., Zhang, W.-G., & Zhang, Q. (2016). “Credibilistic multi-period portfolio optimization model with bankruptcy control and affine recourse”. Applied Soft Computing, 38, 890-906.
* Markowitz, H., & Selection, P. (1959). “Efficient diversification of investments”. John Wiley and Sons, 12, 26-31.
* -Markowitz, H., (1952), “Portfolio Selection”, Journal of Finance, 15, 77- 91.
* Qin, Z., & Kar, S. (2013). Single-period Inventory Problem under Uncertain Environment. Applied Mathematics and Computation, 219, 9630-9638.
* Speranza, M. G.(1993). Linear programming models for portfolio optimization, J. Finance (14), 107–123.
* Tsao, C.Y. (2010). Portfolio selection based on the mean-VaR efficient frontier. Quantitative Finance, 10, 931-945.
* Zhai, J., & Bai, M. (2018). Mean-variance model for portfolio optimization with background risk based on uncertainty theory. International Journal of General Systems, 47(3), 294-312.
* Zhang Q., Huang X., & Tang L. (2011). Optimal multinational capital budgeting under uncertainty. Computers and Mathematics with Applications, 62, 4557-4567
_||_