الگوسازی رفتار قیمت سهام با استفاده از معادلات دیفرانسیل تصادفی با نوسان تصادفی
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارصابر مولایی 1 , محمد واعظ برزانی 2 * , سعید صمدی 3
1 - دانشجوی دکترا اقتصاد دانشگاه اصفهان
2 - دانشیار اقتصاد دانشگاه اصفهان
3 - دانشیار اقتصاد دانشگاه اصفهان
کلید واژه: معادلات دیفرانسیل تصادفی, گارچ غیرخطی, شکست ساختاری, شاخص قیمت سهام,
چکیده مقاله :
هدف این مقاله الگوسازی رفتار قیمت سهام با استفاده از معادلات دیفرانسیل تصادفی است. دادههای این پژوهش شامل مشاهدات روزانه شاخص کل قیمت بازار سهام، شاخص 50 شرکت برتر و شاخص 30 شرکت بزرگ بورس اوراق بهادار تهران در بازه زمانی 5 فروردین 1385 تا 26 فروردین 1394 است. به منظور مدلسازی رفتار شاخص قیمت از دو معادله دیفرانسیل تصادفی استفاده شده است که عبارتاند از: حرکت براونی هندسی و حرکت براونی هندسی همراه با گارچ غیرخطی. براساس نتایج این پژوهش، (1) با توجه به معیار لگاریتم تابع درستنمایی، حرکت براونی هندسی همراه با گارچ غیرخطی در هر سه گروه از دادههای مورد بررسی دارای عملکرد بهتر نسبت به حرکت براونی هندسی است. (2) براساس الگوی معادلات دیفرانسیل تصادفی با نوسان تصادفی، شاخص کل قیمت بیشتر تحت تاثیر اخبار خوب است. (3) تاثیر اخبار بد بر شاخص 30 شرکت بزرگ بورس بیش از تاثیر اخبار خوب است. (4) واریانس غیرشرطی شاخص کل در دو نقطه زمانی دارای شکست ساختاری است، واریانس غیرشرطی شاخص 50 شرکت برتر در یک نقطه زمانی دارای شکست ساختاری است و واریانس غیرشرطی شاخص 30 شرکت بزرگ بورس پایدار بوده و فاقد شکست ساختاری است.
The purpose of this article is modeling the behavior of stock price using stochastic differential equations. The data for this study include daily observations of the total stock market index, the index of the top 50 companies and the index of the 30 largest companies in the Tehran Stock Exchange. The data are daily from March 25, 2006 to April 15, 2015.The geometric Brownian motion and geometric Brownian motion with nonlinear GARCH are used to modeling the behavior of price index. The results of this study includes the following: (1) According to the log likelihood function, geometric Brownian motion with nonlinear GARCH in the three groups studied data has better performance than the geometric Brownian motion. (2) Based on the model of stochastic differential equations with stochastic volatility, the total market index is more influenced by the good news. (3) The impact of the bad news on the index of the 30 largest companies is more than the impact of the good news. (4) The unconditional variance of the total stock market index has two structural breaks; the unconditional variance of index of the top 50 companies has one structural break and no structural breaks in the unconditional variance of index of the 30 largest companies.
* تالانه، ع. کش راد، ه، (1390)، بررسی کارایی بورس اوراق بهادار تهران در سطح ضعیف و نیمه قوی، تحقیقات حسابداری، سال سوم، شماره دوازده.
* خالوزاده، ح. صدیقی، ع، (1384)، الگو سازی و پیش بینی قیمت سهام با استفاده از معادلات دیفرانسیل تصادفی، تحقیقات اقتصادی، شماره 69، 1-27.
* خداویسی، ح. ملابهرامی، ا، (1390)، کاربرد معادلات دیفرانسیل تصافی در مدل سازی و پیش بینی قیمت نفت خام، اولین کنفرانس بینالملی رویکردهای نوین در نگهداشت انرژی.
* صالح آبادی، ع. مهران راد،م، (1390)، آزمون کارایی اطلاعاتی سطح ضعیف بورس اوراق بهادار تهران، فصلنامه بورس اوراق بهادار، شماره 16، ص 7-29.
* نیسی، ع. چمنی انباجی، ر، (1391)، سه مدل اساسی در ریاضیات مالی، مجله مدلسازی پیشرفته ریاضی، شماره 1.
* Ait-Sahalia, Y, (1996), Nonparametric Pricing of Interest Rate Derivative Securities, Econometrica, Vol. 64, 527-560.
* Ait-Sahalia, Y. Jacod, J, (2010), Is Brownian Motion Necessary to Model High Frequency Data?, The Annals of Statistics, Vol. 38, 3093-3128.
* Ait-Sahalia, Y. Wang, Y, (2001), Do Option Markets Correctly Price the Probabilities of Movement of Underlying Asset? , Journal of Econometrics, Vol. 102, 67-110.
* Bakshi, G. Cao, C, Chen, Z, (1997), Empirical Performance of Alternative Option Pricing Models, the Journal of Finance, Vol. LII. No. 5.
* Ball, C. Torous, W, (1983), A Simplified Jump Process for Common Stock Returns, Journal of Financial and Quantitative Analysis, Vol. 18.
* Bates, D, (2003), Empirical option pricing: a Retrospection, Journal of Econometrics, Vol. 116, 387 – 404.
* Black, F, (1976), The Pricing of Commodity Contracts, Journal of Financial Economics, Vol. 3, 167-179.
* Cameron, A. C. Trivedi, P, (2005), Microeconometrics Methods and Applications, Cambridge University Press, 384-418.
* Carlson, M, (2006), A Brief History of the 1987 Stock Market Crash with a Discussion of the Federal Reserve Response, working paper.
* Chisholm, A, (2004), Derivatives Demystified, Willy Finance, 1-2.
* Choi, S, (2015), Explicit Form of Approximate Transition Probability Density Functions of Diffusion Processes, Journal of Econometrics, 57–73.
* Cox, J. Ross, S, (1976), The Valuation of Options for Alternative Stochastic Processes, Journal of Financial Economics, Vol. 3, 145-166.
* Fama, E, (1969), The Adjustment of Stock Prices to New Information, International Economics Review, Vol. 10. P 1-21.
* Fama, F, (1965), The Behavior of Stock-Market Prices, the Journal of Business, Vol. 38, No. 1, 34-105.
* Heston, S, (1993), A Closed- Formed Solution for Options with Stochastic Applications to Bond and Currency Options, working paper.
* Kou, S. G, (2002), A Jump-Diffusion Model for Option Pricing, Management Science, Vol. 48, No. 8, 1086- 1101.
* Long, H. Shimizu, Y. Sun, W, (2013), Least Squares Estimators of Discretely Observed Stochastic Processes Driven by Small Levy Noises, Journal of Multivariate Analysis, 422-439.
* Merton, R, (1973), Theory of Rational Option Pricing, the Bell Journal of Economics and Management Science, Vol. 4, 141-183.
* Milgrom, P, (1981), Good News and Bad News: Representation Theorems and Applications, the Bell Journal of Economics, Vol. 12, No. 2, 380-391.
* Pagan, A. Ullah, A, (1999), Nonparametric Econometrics, Cambridge University Press, 6-8.
* Reno, R. Bandi, F, (2008), Nonparametric Stochastic Volatility, SoFiE Inaugural conference.
* Schmisser, E, (2014), Non-Parametric Adaptive Estimation of the Drift for Jump Diffusion Process. Stochastic Processes and their Applications, 883–914.
* Shreve, S, (2004), Stochastic Calculus for Finance II, Springer, 85-123.