ارزیابی مدلهای هوشمند در تخمین هدایت الکتریکی آبهای زیرزمینی (مطالعه موردی: دشت مازندران)
محورهای موضوعی : مدیریت محیط زیستعیسی حزباوی 1 * , رضا دهقانی 2
1 - استادیار گروه مکانیک بیوسیستم، دانشگاه لرستان، خرم آباد، ایران *(مسوول مکاتبات).
2 - دانشجوی دکترای سازه های آبی، گروه مهندسی آب، دانشگاه لرستان، خرم آباد،، ایران.
کلید واژه: آب زیرزمینی, دشت مازندران, شبکه بیزین, شبکه عصبی مصنوعی, هدایت الکتریکی,
چکیده مقاله :
چکیده زمینه و هدف: منابع آب زیرزمینی در کنار آبهای سطحی تأمینکننده نیاز بخشهای شهری، صنعت و کشاورزی است که علاوه بر کمیت، کیفیت آنها نیز باید بررسی شود. شورییکی از مهمترین پارامترهایی است که برای ارزیابی کیفیت آبهای زیرزمینی در نظر گرفته میشود. روش بررسی: در این پژوهش کاربرد مدلهای شبکه عصبی مصنوعی و شبکه بیزین جهت پیشبینی هدایت الکتریکی8 چاه مشاهداتی دشت مازندران مورد بررسی قرار گرفت. که برای این منظور هیدروژن کربنات، کلرید، سولفات، کلسیم و منیزیم در مقیاس زمانی ماهانه طی دوره آماری (1383-1393) بهعنوان ورودی و هدایت الکتریکی بهعنوان پارامتر خروجی انتخاب شد.معیارهای ضریب همبستگی، میانگین قدر مطلق خطا و ضریب نش ساتکلیف برای ارزیابی و عملکرد مدل مورداستفاده قرار گرفت. یافتهها: نتایج نشان داد مدل شبکه عصبی مصنوعی با ضریب همبستگی (989/0)، میانگین قدر مطلق خطا(ds/m019/0) و نیز معیار نش ساتکلیف(970/0) در مرحله صحت سنجی در اولویت قرار گرفت بحث و نتیجهگیری: در مجموع نتایج حاکی از توانمندی قابلقبول مدل شبکه عصبی مصنوعی در تخمین هدایت الکتریکی آبهای زیرزمینی است.
Abstract Background and Objective: Groundwater resources along with surface water supply the needs for municipal, industrial and agriculture uses, and their quantity and quality should be investigated. Salinity is one of the most important parameters in assessing the quality of groundwater. Method: In this study, application of artificial neural networks and Bayesian network in predicting the electrical conductivity in 8 observation wells in Mazandaran plain was investigated. For this purpose, hydrogen carbonate, chloride, sulfate, calcium and magnesium were selected as input and output parameters for electrical conductivity at monthly a scale during 2003-2013. The criteria of correlation coefficient, mean absolute error and Nash Sutcliff coefficient were used to evaluate the performance of the model. Findings: The results showed that artificial neural network model has the highest correlation coefficient (0.989), the lowest mean absolute error (0.019 ds/m) and the highest standard of Nash Sutcliffe (0.970) ranked the first priority in the validation phase. Discussion and Conclusion: The results indicate acceptable capability of artificial neural network models to estimate the electrical conductivity of groundwater.
- Zare Abiane, H., Bayat varkeshi, M., Akhavan, S., Mohamadi, M. 2011. Estimation of groundwater nitrate in hamedan-bahar plain using neural network synthesis and the effect of data separation on prediction accuracy. Environmental Studies, Vol. 37(58), pp. 129-140. (In Persian)
- Tamadoni Konari, S., 2012. Intelligent prediction of groundwater salinity using artificial neural network. Second Conference on Environmental Planning and Management. Tehran. Iran. (In Persian)
- Derakhshan, Sh., Gholami, V., Darvari, Z., 2013. Simulation of groundwater salinity using artificial neural network (ANN) on the coast of Mazandaran province. Irrigation Science and Engineering. Vol. 36(2), pp. 61-70. (In Persian)
- Mohammad Ali Ghorbani, M.A., Dehghani, R., 2017. Comparison of Bayesian Neural Networks and Artificial Neural Network to Estimate Suspended Sediments in the Rivers (Case Study: Simineh Rood). Environmental Science and Technology. Vol. 19(2), pp. 1-13. (In Persian)
- Kord, M., Asghari Moghadam, A., Nakhaei, M., 2015.Quantitative modeling of nitrate distribution in Ardabil plain aquifer using fuzzy logic. Environmental Studies, Vol. 41(1), pp. 67-89. (In Persian)
- Abbasi P, Mehrdadi N, Nabi R, Zare Abyaneh H. 2013.Application of Artificial Neural Network to Predict Total Dissolved Solids Variations in Groundwater of Tehran Plain, Iran. International Journal of Environment and Sustainability;2(1):10-20.
- Nasr M, Farouk Zahran H. 2014. Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network. The Egyptian Journal of Aquatic Researc;.40(2):111-115.
- Kheradpisheh Z, Talebi A, Rafati L, Ghaneeian MT, Ehrampoush MH.2015. Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran. Desert;20(1):65-71.
- Barzegar R, Asghari Moghadam A.2016.Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment;26(2):1-13.
- Heckerman, D.1997.Bayesian Networks for data Mining''data mining and knowledge Discovery 1,79-119, Kluwer Academic Publishers.Manu factured in the Netherlands.
- Nguyen RT. 1998.Prentiss and j. E. shively..Rainfall interpolation for santa Barbara county. UCSB, Department Geography, USA.
- Nourani, V., Alami, M.T., Aminfar, M.H.2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence. 22(2): 466–472.
- Nourani, V., Kisi, Ö., Komasi, M.2011. Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology. 402 (1–2): 41–59.
- Sadeghi Hesar A. Tabatabaee, Hamid. Jalali, Mehrdad.. Monthly Rainfall Forecasting Using Bayesian BeliefNetworks. 2012.
- Tokar, A., Johnson, P.1999. Rainfall-Runoff Modeling Using Artificial Neural Networks. J Hydrol. Eng. 4(3):232-239.
- Zhu, YM., Lu, XX., Zhou, Y., 2007. Suspended sediment flux modeling withartificial neural network: An example of the Longchuanjian River in the Upper Yangtze Catchment. Geomorphology,84(1),111-125.
- Sadeghi Hesar, A. Tabatabaee, H. Jalali, M. 2012. Monthly Rainfall Forecasting Using Bayesian Belief Networks.
_||_
- Zare Abiane, H., Bayat varkeshi, M., Akhavan, S., Mohamadi, M. 2011. Estimation of groundwater nitrate in hamedan-bahar plain using neural network synthesis and the effect of data separation on prediction accuracy. Environmental Studies, Vol. 37(58), pp. 129-140. (In Persian)
- Tamadoni Konari, S., 2012. Intelligent prediction of groundwater salinity using artificial neural network. Second Conference on Environmental Planning and Management. Tehran. Iran. (In Persian)
- Derakhshan, Sh., Gholami, V., Darvari, Z., 2013. Simulation of groundwater salinity using artificial neural network (ANN) on the coast of Mazandaran province. Irrigation Science and Engineering. Vol. 36(2), pp. 61-70. (In Persian)
- Mohammad Ali Ghorbani, M.A., Dehghani, R., 2017. Comparison of Bayesian Neural Networks and Artificial Neural Network to Estimate Suspended Sediments in the Rivers (Case Study: Simineh Rood). Environmental Science and Technology. Vol. 19(2), pp. 1-13. (In Persian)
- Kord, M., Asghari Moghadam, A., Nakhaei, M., 2015.Quantitative modeling of nitrate distribution in Ardabil plain aquifer using fuzzy logic. Environmental Studies, Vol. 41(1), pp. 67-89. (In Persian)
- Abbasi P, Mehrdadi N, Nabi R, Zare Abyaneh H. 2013.Application of Artificial Neural Network to Predict Total Dissolved Solids Variations in Groundwater of Tehran Plain, Iran. International Journal of Environment and Sustainability;2(1):10-20.
- Nasr M, Farouk Zahran H. 2014. Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network. The Egyptian Journal of Aquatic Researc;.40(2):111-115.
- Kheradpisheh Z, Talebi A, Rafati L, Ghaneeian MT, Ehrampoush MH.2015. Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran. Desert;20(1):65-71.
- Barzegar R, Asghari Moghadam A.2016.Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment;26(2):1-13.
- Heckerman, D.1997.Bayesian Networks for data Mining''data mining and knowledge Discovery 1,79-119, Kluwer Academic Publishers.Manu factured in the Netherlands.
- Nguyen RT. 1998.Prentiss and j. E. shively..Rainfall interpolation for santa Barbara county. UCSB, Department Geography, USA.
- Nourani, V., Alami, M.T., Aminfar, M.H.2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence. 22(2): 466–472.
- Nourani, V., Kisi, Ö., Komasi, M.2011. Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology. 402 (1–2): 41–59.
- Sadeghi Hesar A. Tabatabaee, Hamid. Jalali, Mehrdad.. Monthly Rainfall Forecasting Using Bayesian BeliefNetworks. 2012.
- Tokar, A., Johnson, P.1999. Rainfall-Runoff Modeling Using Artificial Neural Networks. J Hydrol. Eng. 4(3):232-239.
- Zhu, YM., Lu, XX., Zhou, Y., 2007. Suspended sediment flux modeling withartificial neural network: An example of the Longchuanjian River in the Upper Yangtze Catchment. Geomorphology,84(1),111-125.
- Sadeghi Hesar, A. Tabatabaee, H. Jalali, M. 2012. Monthly Rainfall Forecasting Using Bayesian Belief Networks.