ارزیابی تمایل جذب فلزات نیکل و کادمیم توسط توده زیستی حاصل از لجن فاضلاب در مقایسه با دیگر جاذب ها
محورهای موضوعی : مدیریت محیط زیسترضا فولادی فرد 1 * , علی اکبر عظیمی 2
1 - مرکز تحقیقات آلاینده های محیطی، دانشگاه علوم پزشکی قم، قم، ایران – دانشجوی دکتری مهندسی بهداشت محیط، دانشگاه علوم پزشکی تهران *(مسئول مکاتبات)
2 - استادیار گروه مهندسی محیط زیست، دانشگاه تهران- دانشکده محیط زیست، تهران ، ایران
کلید واژه: جذب بیولوژیکی, نیکل, کادمیم, ایزوترم جذب, زیست توده,
چکیده مقاله :
زمینه و هدف: فلزات سنگین از آلاینده های مهم محیط زیست بوده و به علت ویژگی سمیّت و تجمع پذیری از لحاظ بهداشتی بسیار مورد توجه قراردارند. امروزه استفاده از جاذب های بیولوژیک جهت تصفیه این مواد به علت اقتصادی بودن و سازگاری با محیط زیست، بسیار مورد توجه قرار گرفته است. هدف این تحقیق سنجش میزان جذب دو فلز سنگین نیکل و کادمیم توسط توده زیستی حاصل از لجن فاضلاب (بایوسالید) و مقایسه نتایج با دیگر تحقیقات مشابه جهت بررسی تمابل جذب آن ها می باشد. روش کار: پودر بایوسالید با استفاده از لجن دفعی فاضلاب شهری در طی مراحل خشک سازی، خرد سازی و دانه بندی تهیه گردید. محلول های 25/0 و 75/0 میلی مولار فلزات نیکل و کادمیم با 5/0، 1، 2 و 4 گرم از این بیوسالید در pH چهار و میزان اختلاط 200 دور بر دقیقه و دمای 26-24 درجه سلسیوس به مدت دو ساعت (در مطالعات سینتیک در زمان های متوالی5 تا 420 دقیقه) مورد تماس واقع شده و نمونه های حاصل توسط دستگاه جذب اتمی اسپکتروفتومتری جهت مطالعات سینتیک و مدل سازی ایزوترم جذب و مقایسه با دیگر مطالعات مورد آنالیز قرارگرفت. یافته ها : نتایج نشان می دهد که زمان تعادل جذب فلزات در حدود دو ساعت بوده و افزایش pH تا چهار باعث افزایش چشمگیر میزان جذب می شود. جذب هر دو فلز از مدل لانگمویر تبعیت کرده و میزان حداکثر ظرفیت جذب(qmax) کادمیم و نیکل توسط بیوسالید به ترتیب 37/0 و 195/0 میلیمول بر گرم بیوسالید خشک تحت مدل لانگمویر میباشد. نتیجه گیری: تمایل جذب بیوسالید برای کادمیم همچون دیگر مطالعات انجام شده در حوزه جذب بیولوژیکی بیش تر از نیکل برآورد گردید. به صورت کلی می توان تمایل جذب جلبک ها و قارچ ها را در جذب فلزات بیش از لجن ها و باکتری ها دانست که این موضوع بیش تر ناشی از خصوصیات دیواره سلولی آن ها می باشد.
Heavy metals pollution is very important in Environment. Toxicity and accumulation characteristics ofthese metals are more noticeable for health aspects. Today, using bio-sorbent is more noticeablebecause these ways are ecofriendly and economic. In this survey, in addition to achieving Ni and Cdbio-sorption by bio-solid , the results of other relative surveys used for comparing the results andbio-sorption affinity discussion.Bio-solid powder produced from municipal excess sludge by drying, grinding and grainsizing. Ni andCd solutions in 0.25 and 0.75 mille molar have been contacted which 0.5, 1, 2 and 4 grams of biosolidin pH 4, 200 rpm stirring, 24-260C temperature and two hours (continuous 5-420 min in kineticstudy) time and samples have been analyzed with atomic absorption spectrophotometer to kinetic andisotherm modeling study and comparing the results.The maximum equilibrium adsorption of metals observed at two hours contact time and increasing ofpH up to 4 increased the adsorption rate. The equilibrium data of both metals could be fitted byLangmuir isotherm equation and the maximum adsorption capacity (qmax) for cadmium and nickel are0.38 and 0.195 mmol/gr dry bio-solid, respectively.The same as other biomasses studied for bio-sorption of heavy metals bio-sorption affinity of bio-solidfor Cd is more than Ni. Generally, the bio-sorption affinity of algae and fungi for heavy metalsbio-sorption is more than sludge and bacteria that is the result of cellular wall characteristics
- Chong, A. M. Y.; Wong, Y. S.; Tam, N. F. Y., (2000). “Performance of different microlgal species in removing nickel and zinc from industrial wastewater”, Chemosphere, Vol. 41, pp. 251-257.
- Liehr, S. K.; Chen, H. J.; Lin, S. H., (1994). “Metal removal by algal biofilms”, Wat. Sci. Tech., Vol. 30, No. 11, pp. 59-68.
- Matheical, J.T.; Yu, Q., (1996). “Biosorption of lead from aqueous solutions by marine algae Ecklonia radiate”, Wat. Sci .Tech. Vol. 34, No. 9, pp. 1-7.
- Volesky, B., (1990). “Biosorption of heavy metals”, CRC Press, Boca Raton, USA.
- Baird, C., (1995), “Environmental chemistry”, W. H. Freeman and Company.
- Gupta, V. K.; Shrivastava, A. K.; Jain, N., (2001). “Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species”, Wat. Res. Vol. 35, No. 17, pp. 4079-4085.
- Gadd G.M.; Griffiths A.J., (1978). “Microorganisms and heavy metal toxicity” Microbial. Ecology ,vol. 4, pp. 303-317
- Volesky B., (1987). “Biosorbents for metal recovery”, Trends in Biotechnology,. Vol 5, pp. 96-101.
- Volesky, B., (1990). “Biosorption of heavy metals”, CRC Press, Boca Raton, USA.
- Tung, V. P.; Lawson, F.; Prince, I. G.,( 1988). Biotechnol. Bioeng. Vol. 34, pp. 990-999.
- Wase, J.; Forster, C., (1997). “Biosorbents for metal ions”, Taylor and Francis Ltd.
- Gupta, R.; Ahuja, P.; Khan, S.; Saxena, R. K.; Mohapatra, H., (2000). “Microbial biosorbents Meeting challenges of heavy metal pollution in aqueous solutions”, Current Science, Vol. 78, No. 8, pp. 967-973
- Volesky, B., (2001). “Detoxification of metal-bearing effluents: biosorption for the next century”, Hydrometallurgy, Vol. 59, pp. 203-216.
- Gadd, G. M., (1990). “Heavy metal accumulation by bacteria and other microorganisms” Experientia, , vol. 46, p. 834-840.
- Norton L.; Baskaran K.; McKenzie T., (2004). “Biosorption of zinc from aqueous solutions using biosolids”, Advances in Environmental Research, vol. 8, pp. 629–635.
- Eaton A.D.; Clesceri L.; Greenbery A.E., (1998)."Standard methods for the examination of water and wastewater" , 20th ed., APHA- AWWA – WEF
- McCabe W.; Smith J.; Harriot p., (1982). "Unit Operation of Chemical Engineering, 4th ed., Mcgrow-Hill, Inc.
- Liu H.L.; Chen B. Y.; Lan Y.W.; and Cheng Y.C.,(2004). "Biosorption of Zn (II) and Cu (II) by the indigenous Thiobacillus thiooxidans". Chemical Engineering Journal, vol.97, pp. 195–201.
- AWWA, (1990). "Water Quality and Treatment", 4th ed., McGrow-Hill.Inc.
- دیهول، ف.، (1370)،«بررسی و حذف دترجنتها از پسابهای صنعت نساجی بطریق جذب» پایان نامه کارشناسی ارشد در رشته مهندسی محیط زیست ، دانشکده فنی و مهندسی ، دانشگاه تربیت مدرس.
- Davis T. A.; Volesky B.; Mucci A., (2003). "A review of the biochemistry of heavy metalbiosorption by brown algae" Water Research, vol. 37, pp. 4311–4330.
- Yin P.; Yu Q.; Jin B.; Ling Z., (1999). "Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater". Water Research Vol. 33, Iss. 8, pp. 1960-1963.
- Arıca M. Y.; lu G. B.; Yılmaz M.; Bekta S.; Genç Ö., (2004). "Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii" Journal of Hazardous Materials Vol. 109, Iss.1-3, pp. 191-199.
- Liu Y.; Yang S. F.; Xu H.; Woon K. H.; Lin Y. M.; Tay J. H., (2003)." Biosorption kinetics of cadmium (II) on aerobic granular sludge". Process Biochemistry Vol. 38, Iss.7 pp. 997-1001.
- Yalçınkaya Y.; Soysal L.; Denizli A.; Arıca M. Y.; Bekta S.; Genç Ö., (2002)." Biosorption of cadmium from aquatic systems by carboxymethylcellulose and immobilized Trametes versicolor". Hydrometallurgy Vol.63, Iss. 1, pp. 31-40.
- Yu Q.; Matheickal J.T.; Yin P.; Kaewsarn P., (1999). "Heavy metal uptake capacities of common marine macro algal biomass ". Wat. Res. Vol. 33, No. 6, pp. 1534-1537.
- Holan, Z. R.; Volesky, B.; Prasetyo, I., (1993). “Biosorption of Cd by biomass of marine algae”, Biotech. Bioeng., Vol. 41, pp. 819-825.
- Matheickal J. T.;Yu Q.; Woodburn G. M., (1999)." Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum" Water Research Vol. 33, Iss. 2, pp. 335-342.
- Cruz C.C.V.; Carlos A.; da Costa A.; Henriques C. A.; Luna A. S., (2004)." Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass". Bioresource Technology Vol. 91, Iss.3, pp. 249-257.
- Inthorn D., et al. (2002). "Sorption of mercury, cadmium and lead by microalgae". ScienceAsia, Vol. 28, pp. 253-261.
- Dilek F. B.; Erbay A.; Yetis U., (2002)." Ni (II) biosorption by Polyporous versicolor". Process Biochemistry Vol. 37, Iss. 7, pp. 723-726.
- Deng SH.; Ting Y. P., (2005)." Characterization of PEI-modified biomass and biosorption of Cu (II), Pb(II) and Ni(II)". Water Research Vol. 39, Iss. 10, pp. 2167-2177.
- Kacar Y.; Arpa C.; Sema Tan S.; Adil Denizli A.; Genc O.; Arıca M.Y.,(1999)." Biosorption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium". Process Biochemistry, Vol. 37, pp.601–610.
- Aksu Z., (2002)," Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris". Process Biochemistry Vol. 38, Iss. 1, pp. 89-99.
- Davis, T. A.; Volesky, B.; Vieira, RHSF., (2000). “Sargassum seaweed as biosorbent for heavy metals”, Wat. Res. Vol. 34, pp. 4270-4278.
- Özer A.; Özer D., (2003)." Comparative study of the biosorption of Pb (II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats". Journal of Hazardous Materials Vol. 100, Iss.1-3, 27, pp. 219-229.
- Aksu Z., (2001)." Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature". Separation and Purification Technology Vol. 21, Iss. 3, pp. 285-294.
- Holan ZR; Volesky B., (1994)." Biosorption of lead and nickel by biomass of marine aglae". Biotechnol-bioeng. New York John Wiley & Sons, Inc, Vol. 43 (11) pp. 1001-1009.
- Hashim M.A.; Chu K.H., (2004). "Biosorption of cadmium by brown, green, and red seaweeds" Chemical Engineering Journal Vol.97,pp. 249–255.
- Rangsayatorn N.; Pokethitiyook P.; Upatham E. S.; Lanza G. R., (2004)."Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel". Environment International Vol. 30, Iss. 1, pp. 57-63.
- Selatnia A.;Bakhti M.Z.; Madani A.; Kertous L.; and Mansouri Y.; (2004)." Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass". Hydrometallurgy Vol. 75, Iss. 1-4, pp. 11-24.
- Hawari A. H.; Mulligan C. N., (2006)." Biosorption of lead (II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass". Bioresource Technology Volume 97, Issue 4, Pages 692-700
- Kaewsarn P., (2002). "Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp."Chemosphere Vol. 47, pp. 1081–1085.
- Chang J. S.;Law R.; Chang C. C., (1997)." Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21". Water Research Vol. 31, Iss. 7, pp. 1651-1658.
- Tuzün I.; Bayramoğlu G.; Yalçın E.; Başaran G.; Çelik G.; Arıca M. Y., (2005). Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii". Journal of Environmental Management Vol. 77, Iss. 2, pp. 85-92.
- Yan, G.; iraraghavan, T.,(2003).“Heavy metal removal from aqueous solution by fungus Mucor rouxii”, Wat. Res. Vol. 37, pp. 4486-4496.
- Vijayaraghavan K.; egan J.; Palanivelu K.; Velan M., (2005)." Biosorption of cobalt (II) and nickel (II) by seaweeds: batch and column studies". Separation and Purification Technology Vol. 44, Iss.1, pp. 53-59.
- Göksungur Y.; Üren S.; Güvenç U., (2005)." Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass". Bioresource Technology Vol. 96, Iss. 1, pp. 103-109.
- Weng C. H.,(2002). "Removal of Nickel from Dilute Aqueous Solution by Sludge-Ash". Journal of Environmental Engineering, Vol. 128, No. 8., pp. 716–722.
- Martins R. J. E.; Pardo R.;Boaventura R. A. R., (2004)." Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness". Water Research Vol. 38, Iss. 3, pp. 693-699.
- Padmavathy V.; Vasudevan P.; Dhingra S. C., (2003)." Biosorption of nickel (II) ions on Baker’s yeast". Process Biochemistry Vol. 38, Iss.10, pp. 1389-1395.
- Akar T.; Tunali S., (2005)." Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd (II) and Cu (II) ions from aqueous solutions". Minerals Engineering, Vol. 18, pp. 1099-1109.
- Li Q.; Wu S.; Liu G.; Liao X.; Deng X.; Sun D.; Hu Y.; Huang Y., (2004)." Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium". Separation and Purification Technology Vol. 34, Iss. 1-3, pp. 135-142.
- Yan G.; Viraraghavan T., (2000). "Effect of pretreatment on the bioadsorption of heavy metalson Mucor rouxii" Water SA., Vol. 26 No. 1.
- Arican B.;Celal Gokcay F.; and Yetis U., (2002)." Mechanistics of nickel sorption by activated sludge". Process Biochemistry Vol. 37, Iss.11, pp. 1307-1315.
- Strattin, g. w., (1987). ''Review in Environmental Toxicology'', Elsevier, Amsterdam, pp. 85-94.
- Greene, B.and Darnall, D. W.,( 1990). ''Microbial Mineral Recovery'' McGraw Hill, pp. 277-301.
- Gadd, G. M., (1998).'' Biotechnology-A Comperhensive Treatise, Special Microbial Processes'', VCH, VerlgesgesellSchaft, Weinheim, Germany, Vol. 6b, pp. 401-433.
- Rosenberger, R. F.,(1975). ''The Filamentous Fungi'', Edward Arnold, London, Vol. 2, pp. 328- 342.
- Paknikar, K. M.; Paknikar, U. S.; Puranik, P. R., (1993). ''Biohydrometallurgical Technologies ''The Minerale, Materials Society, TMS Publication, Wyoming, USA, Vol, 2, pp. 229-236.
- Gadd, G. M.,(1990), ''Heavy metal accumulation by bacteria and other microorganisms. Experientia, Vol. 46, p. 834-840.