سنتز نانوذره نقره با سدیم بروهیدرات به روش احیای شیمیایی جهت تولید نانوکامپوزیت نقره آنتیباکتریال زیستتخریبپذیر به روش Solution Blending تولید نانوکامپوزیت نقره آنتی باکتریال زیستتخریبپذیر
محورهای موضوعی : مدیریت محیط زیستزهرا طاعتی جفرودی 1 , حامد اهری 2 * , نکیسا سهرابی حقدوست 3
1 - کارشناس ارشد گروه زیست فناوری مواد غذایی، واحد علوم و تحقیقات تهران،دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشیار دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات تهران،دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
3 - استادیار دانشکده دامپزشکی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: سنتز شیمیایی, نانوکامپوزیت نقره, پوشش زیستتخریبپذیر, نانوذره نقره,
چکیده مقاله :
زمینه و هدف : پژوهشی که پیش رو دارید، بررسی اثر ضدباکتریایی نانوذرات نقره بر روی باکتریهای گرم منفی و گرم مثبت میباشد که در جهت استفاده از آنها در تولید نانوکامپوزیت نقره با خاصیت آنتیباکتریال مناسب و زیستتخریبپذیر به روش محلول اجرا درآمده است. روش بررسی: به منظور بررسی خواص ضدمیکروبی نانوذرات نقره،در تابستان 1397(تاریخ شروع آزمایش)ابتدا نانوذره نقره به روش احیای شیمیایی با NaBH4سنتز گردید و پس از انجام آزمونهای نانومتریک UV-VIS, DLS, XRD و TEM وFTIR ، از باکتری استافیلوکوکس اورئوس به عنوان شاخص گرم مثبت، باکتری اشرشیا کلی به عنوان شاخص گرم منفی استفاده شد و بعد میزان MIC ، MBC و Inhibition Zone محاسبه شد.در مرحله بعد نانوکامپوزیت به روش Solution Blending تولید و آماده گردید و خاصیت آنتیباکتریال آن با روش Inhibition Zone بررسی گردید. یافته ها: نتایج به دست آمده حاکی از آن است که نانوذرات نقره در غلظتهای 50،20 میکروگرم بر میلی لیتر به ترتیب بر روی استافیلوکوکوس آرئوس، اشرشیا کلی اثر بازدارندگی(MIC) دارد و همچنین در غلظتهای 60 ،40 میکروگرم بر میلیلیتر به ترتیب بر میکروارگانیسمهای یادشده اثر کشندگی (MBC) دارد که بیشترین اثر ضدباکتریایی بر اساس نتایج، بر باکتری گرم مثبت استافیلوکوکوس آرئوس مشاهده شد و علی رغم این در تست هاله عدم رشد(Inhibition zone)، هاله به قطر mm 3-5 در اطراف دیسک نانوذره نقره در کشتهای میکروارگانیسمهای ذکر شده،مشاهده گردید و در تست هاله عدم رشد نانوکامپوزیت تولید شده نیز هاله ایجاد شده بر اساس مقادیر مورد انتظار بود. نتایج آزمایش ها با 3 تکرار و مقدار PValue محاسبه شده با روش ANOVA با ارزش 0001/0 P < معنادار بوده است. بحث و نتیجه گیری: نشان داد نانوذرات نقره میتواند به خوبی بر روی باکتریهای گرم مثبت و گرم منفی اثر مهارکنندگی و کشندگی داشته باشد و همچنین نانوکامپوزیت تولید شده به روش یادشده،خاصیت آنتیباکتریال بالایی دارد.
Background and Objective: This study aimed to investigate the antibacterial effect of silver nanoparticles on Gram-negative and Gram-positive bacteria and producing silver nanocomposites with suitable and biodegradable antibacterial properties by Solution Blending method. Method: To investigate the antimicrobial properties of silver nanoparticles, silver nanoparticles were first synthesized by NaBH4 reduciton and after performing UV-VIS, DLS, XRD and TEM and FT-IR tests, Staphylococcus aureus as a Gram-positive, Escherichia coli as a Gram-negative bacteri was used, investigated by MIC, MBC and Inhibition Zone. In the next step, the nanocomposite was prepared and prepared by Solution Blending method and its antibacterial activity was evaluated by Inhibition Zone method. Findings: The results showed that silver nanoparticles had inhibitory effect on Staphylococcus aureus, Escherichia coli and Candida albicans at concentrations of 50, 20 and 355 μg / ml respectively and also at concentrations of MIC. 60, 40 and 370, respectively, have the lethal effect on the aforementioned microorganisms (MFC, MBC). A diameter of 3-5 mm was observed around the silver nanoparticles in the cultures of the mentioned microorganisms and in the test of nanocomposite Inhibiion zone, the halo was created based on expected values.the results of the experiments were calculated with 3 replications and the amount of PValue was significant (P<0/0001)by ANOVA method.we used also 3 antibiotic as control for Inhibition zone test. Discussion and Conclusion: Silver nanoparticles showed good inhibitory and lethal effects on Gram-positive and Gram-negative bacteria and Also, the nanocomposites produced by the mentioned method have high antibacterial and viscolastic properties.
- Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. 2019;12(8):1823-38.
- Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses.
- Deus D, Kehrenberg C, Schaudien D, Klein G, Krischek C. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Poultry Science. 2016;96(2):449-57.
- Roustami abolverdi F NM, Dadfar S. Production of polyvinyl alcohol-hydroxypropyl methylcellulose nanocomposite containing silver nanoparticles and investigation of its physicochemical and antimicrobial properties. Twenty-third National Congress of Food Science and Technology of Iran: Islamic Azad University, Quchan Branch. 2015.
- Mathew S, S S, Mathew J, E.K R. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packaging and Shelf Life. 2019;19:155-66.
- Al-Sharqi A, Apun K, V M, Kanakaraju D, Maurice Bilung L. Enhancement of the Antibacterial Efficiency of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria Using Blue Laser Light. International Journal of Photoenergy. 2019;2019:1-12.
- Ehsani N SS, Familmomen R. Development of two packaging methods based on silver nanoparticles to increase the shelf life of strawberries. Food Science and Nutrition. 2017.
- Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115-21.
- Verma P, Maheshwari S. Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. Journal of Microscopy and Ultrastructure. 2018;6(4):182-7.
- Awad M, Hendi A, Mustafa Ortashi K, Alotaibi RA, Sharafeldin MS. Characterization of silver nanoparticles prepared by wet chemical method and their antibacterial and cytotoxicity activities. 2016;15:679-85.
- Panpaliya NP, Dahake PT, Kale YJ, Dadpe MV, Kendre SB, Siddiqi AG, et al. In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent J. 2019;31(1):76-83.
- Cunha F, Maia K, Mallman E, Cunha M, Maciel A, Souza I, et al. Silver nanoparticles-disk diffusion test against escherichia coli isolates. Revista do Instituto de Medicina Tropical de Sao Paulo. 2016;58:73.
- SIMBINE EO, RODRIGUES LdC, LAPA-GUIMARÃES J, KAMIMURA ES, CORASSIN CH, OLIVEIRA CAFd. Application of silver nanoparticles in food packages: a review. Food Science and Technology. 2019. 802-39: 793.
- Fathifar M SN, Editors. Application of silver nanoparticles in food packaging. 2016.
- Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study: Hindawi Limited; 2015. Article 53 p.
- Eslami M, Bayat M, Mozaffari Nejad AS, Sabokbar A, Anvar AA. Effect of polymer/nanosilver composite packaging on long-term microbiological status of Iranian saffron (Crocus sativus L.). Saudi J Biol Sci. 2016;23(3):341-7.
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016;7:1831-.
- Xueting Y, He B, Liu L, Qu G, Shi J, Hu L, et al. Antibacterial Mechanism of Silver Nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics. 2018;10.
Pooyamanesh M, Ahari H, Anvar AA, Karim G. Synthesis and Characterization of Silver Nanocomposite as a Food Packaging. Journal of Food Biosciences and Technology. 2019;09(2):73-82.
_||_
- Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. 2019;12(8):1823-38.
- Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses.
- Deus D, Kehrenberg C, Schaudien D, Klein G, Krischek C. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Poultry Science. 2016;96(2):449-57.
- Roustami abolverdi F NM, Dadfar S. Production of polyvinyl alcohol-hydroxypropyl methylcellulose nanocomposite containing silver nanoparticles and investigation of its physicochemical and antimicrobial properties. Twenty-third National Congress of Food Science and Technology of Iran: Islamic Azad University, Quchan Branch. 2015.
- Mathew S, S S, Mathew J, E.K R. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packaging and Shelf Life. 2019;19:155-66.
- Al-Sharqi A, Apun K, V M, Kanakaraju D, Maurice Bilung L. Enhancement of the Antibacterial Efficiency of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria Using Blue Laser Light. International Journal of Photoenergy. 2019;2019:1-12.
- Ehsani N SS, Familmomen R. Development of two packaging methods based on silver nanoparticles to increase the shelf life of strawberries. Food Science and Nutrition. 2017.
- Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115-21.
- Verma P, Maheshwari S. Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. Journal of Microscopy and Ultrastructure. 2018;6(4):182-7.
- Awad M, Hendi A, Mustafa Ortashi K, Alotaibi RA, Sharafeldin MS. Characterization of silver nanoparticles prepared by wet chemical method and their antibacterial and cytotoxicity activities. 2016;15:679-85.
- Panpaliya NP, Dahake PT, Kale YJ, Dadpe MV, Kendre SB, Siddiqi AG, et al. In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent J. 2019;31(1):76-83.
- Cunha F, Maia K, Mallman E, Cunha M, Maciel A, Souza I, et al. Silver nanoparticles-disk diffusion test against escherichia coli isolates. Revista do Instituto de Medicina Tropical de Sao Paulo. 2016;58:73.
- SIMBINE EO, RODRIGUES LdC, LAPA-GUIMARÃES J, KAMIMURA ES, CORASSIN CH, OLIVEIRA CAFd. Application of silver nanoparticles in food packages: a review. Food Science and Technology. 2019. 802-39: 793.
- Fathifar M SN, Editors. Application of silver nanoparticles in food packaging. 2016.
- Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study: Hindawi Limited; 2015. Article 53 p.
- Eslami M, Bayat M, Mozaffari Nejad AS, Sabokbar A, Anvar AA. Effect of polymer/nanosilver composite packaging on long-term microbiological status of Iranian saffron (Crocus sativus L.). Saudi J Biol Sci. 2016;23(3):341-7.
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016;7:1831-.
- Xueting Y, He B, Liu L, Qu G, Shi J, Hu L, et al. Antibacterial Mechanism of Silver Nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics. 2018;10.
Pooyamanesh M, Ahari H, Anvar AA, Karim G. Synthesis and Characterization of Silver Nanocomposite as a Food Packaging. Journal of Food Biosciences and Technology. 2019;09(2):73-82.