Changes in Alfalfa (Medicago sativa L.) Growth and Biochemical Traits in Response to Silicon Application under Different Irrigation Regime
Subject Areas : Journal of Crop Nutrition ScienceHadi Pirasteh-Anosheh 1 , Yahya Emam 2 * , Gholamhassan Ranjbar 3 , Hossein Sadeghi 4
1 - National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran.
2 - Department of Agronomy, College of Agriculture, Shiraz University, Shiraz, Iran.
3 - National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran.
4 - Department of Agronomy, College of Agriculture, Shiraz University, Shiraz, Iran.
Keywords: Water deficit, antioxidant enzyme, Mineral compound,
Abstract :
To decrease adverse effects of water deficit is foliar application with chemical agents such as silicon. However, there is low information on the influence of silicon on alfalfa under drought stress conditions. Thus, the current study was conducted to assessment the effect of different silicon concentrations (0, 1 and 2 mili Molar concentration) on alfalfa growth trend and biochemical traits, which grown under five level of irrigation regimes (100% as control, 85%, 70%, 55% and 40% field capacity; FC) according factorial experiment based on completely randomized design with four replication. The results showed that plant height, dry weight, chlorophyll a and b were reduced in response to water deficit; while water deficit increased chlorophyll a to b ratio as well as activity of superoxide dismutase and catalase in alfalfa crop. Also, water deficit up to 55% FC increased leaf silicon concentration, free proline, total soluble protein and peroxidase; however, severe water stress reduced them. Despite negative impact of water deficit, silicon application increased plant height, dry weight, soluble protein and three antioxidant enzymes as well as leaf silicon concentration. The positive effect of silicon on the most of the measured traits was greater at 2 mM than 1mM concentration, which might be due to higher silicon absorption at higher concentration. Alleviation ability of silicon was greater under severe water deficit compared to no or light water stress conditions. Our results suggested that although water deficit reduced growth and caused some changes in biochemical traits; silicon application, especially at 2mM concentration can be advised to alleviate some of the negative impact of water deficit.
Abedi, T. and H. Pakniyat. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J. Genet. Plant Breed. 46(1): 27–34.
Aebi, H. 1984. Catalase in vitro. Methods Enzymol. J. 105: 121-126.
Aranjuelo, M. I., J. J. Irigoyen. and M. S. Diaz. 2001. Effect of increased temperature and drought associated to climate change on change on productivity of modulated alfalfa. En. XIV Eucarpia Medicago SPP. Group Meeting. Quality in Lucerne and Medics for animal production. Zaragoza. pp: 127.
Asgharipour. M. R. and H. Mosapour. 2016. A foliar application silicon enhances drought tolerance in fennel. J. Animal Plant Sci. 26(4): 1056-1062.
Ashraf, M. and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. J. 59: 206-216.
Bates, L. S., R. P. Waldren. and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. J. 39: 205-207.
Biel, K. Y., V. V. Matichenkov. and I. R. Fomina. 2008. Protective role of silicon in living systems. pp: 167- 198. In: D.M. Martirosyan (Ed.). Functional Foods for Chronic. D and A Inc. Richardson Press. Dallas. Texas. USA.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dye binding. An. Bio-Chem. J. 72: 248-254.
Carlos A., C. Crusciol, A. L. Pulz. and L. B. Lemos. 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci. J. 49: 949-954.
De Souza, L. C., N. C. Melo, J. A. Siqueira, V. A. Silva Filho. and C. F. De Oliveira Neto. 2015. Biochemical behavior in grass subjected to drought and different concentrations of silicon. Revista Agrarian. J. 8(29): 260-267.
Dhindsa, R. S., P. Plumb-Dhindsa. and T. A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101.
Elliott, C. L. and G. H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39: 1118-1119.
Epstein, E. 1999. Silicon. Annual. Rev. Plant Biol. J. 50: 641-664.
Feng, R., C. Wei. and S. Tu. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87: 58-68, DOI: 10.1016/j.envexpbot.2012.09.002.
Foyer, C. H. and G. Noctor. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. J. 17: 1866-1875.
Gagoonani, S., S. Enteshari, K. Delavar. and M. Behyar. 2011. Interactive effects of silicon and aluminum on the malon di aldehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J. Med. Plants Res. 24: 5818-5827.
Gao, X., C. Zou, L. Wang. and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29(9): 1637-1647.
Gao, X., C. Zou, L. Wang. and F. Zhang. 2004. Silicon improves water use efficiency in maize plants. J. Plant Nutr. 27: 1457-1470.
Gideon, O. O., O. A. Richard. and A. A. Adekunle. 2016. Proline and soluble sugars accumulation in three pepper species (Capsicum spp) in response to water stress imposed at different stages of growth. Sci. Cold Arid Reg. J. 8(3): 205-211.
Gong, H. J., K. M. Chen, Z. G. Zhao, G. C. Chen. and W. J. Zhou. 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plant. J. 52: 592-596.
Gong, H., X. Zhu, K. Chen, S. Wang. and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. J. 169: 313-321.
Gong, H., K. Chen, G. Chen, S. Wang. and C. Zhang. 2003. Effects of silicon on growth of wheat under drought. J. Plant Nutr. 26(5): 1055-1063.
Gunes, A., D. J. Pilbeam, A. Inal. and S. Coban. 2008. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Community. Soil Sci. Plant Anal. J. 39: 1885-1903.
Gunes, A., A. Inal, E. G. Bagci. and S. Coban. 2007a. Silicon mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J. Plant Physiol. 164: 807–811.
Gunes, A., D. J. Pilbeam, A. Inal, E. G. Bagci. and S. Coban. 2007b. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J. Plant Interact. 2: 105–113.
Haddad, R. and Z. Moshiri. 2008. Effect of silicon in increasing drought tolerance on two leaves stage of barley plant. J. Modern Gen. 5(4): 47-58.
Hajiboland, R., N. Sadeghzadeh, N. Ebrahimi, B. Sadeghzadeh. and S. A. Mohammadi. 2015. Influence of selenium in drought-stressed wheat plants under greenhouse and field conditions. Acta Agriculturae Slovenica. J. 105(2): 175-191. DOI: 10.14720/aas.2015.105.2.01.
Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxova. and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. J. 123: 459-466.
Ingram, J. and D. Bartles. 1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. J. 47: 377-403.
Karmollachaab, A., M. H. Gharineg, M. Bakhshandeh, M. Moradi. and Gh. Fathi. 2014. Effect of Silicon application on physiological characteristic and growth of wheat (Triticum aestivum L.) under drought stress conditions. Agro-Ecology. J. 5(4): 430-442.
Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63: 1593-1608. DOI: 10.1093/jxb/err460.
Liang, Y. C., W. Sun, Y-G. Zhu. and P. Christie. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollution. J. 147: 422-428. DOI: 10.1016/j.envpol.2006.06.008.
Liang, Y., Q. Chen, Q. Liu, W. Zhang. and R. Ding. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160: 1157–1164.
Lichtenthaler, H. and A. R. Wellburn. 1983. Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Bio-Chem. Soc. Trans. J. 603: 591-592.
Maghsoudi, K., Y. Emam. and M. Ashraf. 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish. J. Bot. 39(4): 625-634.
Matoh, T., S. Murata. and E. Takahashi. 1991. Effect of silicate application on photosynthesis of rice plants. Japan J. Soil Sci. Plant Nutr. 62: 248-251.
Na, L. and C. Jiashu 2001. Effects of silicon on earliness and photosynthetic characteristics of melon. Acta Hort. Sinica. J. 28: 421-424.
Nyachiro, J. M., K. G. Briggs, J. Hoddinott. and A. M. Johnson-Flanagan. 2001. Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Res. Community. J. 29: 135–142.
Pirasteh-Anosheh, H. Y. Emam, M. Ashraf. and M. R. Foolad. 2012. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Studies Biol. J. 4(11): 501-520.
Polle, A., T. Otter and F. Seifert. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. J. 106: 53-60.
Remus-Borel, W., J. G. Menzies. and R. R. Belanger. 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology. J. 66(3): 108-115.
Saed-Moucheshi, A., H. Pakniyat, H. Pirasteh-Anosheh. and M. M. Azooz. 2014. Role of ROS as Signaling Molecules in Plants. pp: 5858-626. In: P. Ahmad (Ed.) Reactive Oxygen Species, Antioxidant Network and Signaling in Plants. Springer Publication, New York. USA.
Safarnejad, A. 2008. Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.). Pak. J. Bot. 40: 735-746.
Saneoka, H., R. E. A. Moghaieb, G. S. Premachandra. and K. Fujita. 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ. Exp. Bot. J. 52: 131-138.
Shen, X., Y. Zhou, L. Duan, Z. Li, A. E. Eneji. and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167(15):1248-1252.
Shi, X., C. Zhang, H. Wang. and F. Zhang. 2005. Effect of Si on the distribution of Cd in rice seedlings. Plant Soil. J. 272(1-2): 53-60.
Shu, L. Z. and Y. H. Liu. 2001. Effects of silicon on growth of maize seedlings under salt stress. Agro-Environ. Prot. J. 20: 38-40.
Silva, O. N., A. K. Lobato, F. W. Avila, L. Costa, F. Oliveira, B. G. Santos, A. P. Martins, R. Lemos, J. Pinho, M. B. Medeiros, M. Cardoso. and I. P. Andrade. 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water deficient tomato cultivars. Plant Soil Environ. J. 58: 481-486.
Tardieu, F., B. Parent, C. F. Caldeira. and C. Welcker. 2014. Genetic and physiological controls of growth under water deficit. Plant Physiol. J. DOI: 10.1104/pp.113.233353.
Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: a review. Amino Acids. J. 35: 753-759. DOI: 10.1007/s00726-008-0061-6.
Wang, X. S. and J. G. Han. 2007. Effects of NaCl and silicon distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci. Plant Nutr. J. 53: 278-285.
Zhu, Z., G. Wei, J. Li, Q. Qian. and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. J. 167: 527–533.