Evaluation Azospirillum Trends and Urea Fertilizer on Barley Production under Warm and Dry Climate Condition (Ahvaz region, Southwest of Iran)
Subject Areas : Journal of Crop Nutrition ScienceMohamad Reza Dadnia 1 * , Mahshid Abedzadeh 2
1 - Assistant Professor, Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
2 - Msc. Student, Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
Keywords: nitrogen, Growth indices, Hordeum Vulgare L, <i>Biofertilizer, Nutrition</i>,
Abstract :
BACKGROUND: Imbalanced mineral nutrition and scant information about nitrogen (N) in plants may result in reduction in barley morpho-physiological activities. However, farmers use higher or lower fertilizer doses regarding barley growth and yield. Barley is characterized by a rich genetic diversity, making it an important for studies of Azospirillum response with high potential for crop improvement. Moreover, biological fertilizers severely affect barley growth and development, leading to improve yield loss. OBJECTIVES: Plants of an Azospirillum exposed to 0, 2, and 4 h per 100 kg seed were compared with urea fertilizer levels (75 and 100%) to identify growth pathways to barley’s response. METHODS: Current research was done according split plot experiment based on randomized block design with four replications which urea fertilizer (75% and 100%) was in main plot and Azospirillum trends belonged to sub plots. RESULT: Regulation of crop growth was severely impacted in leaves, highlighting the complexity of Azospirillum response mechanisms in this tissue. Functional analyses in tissues indicated that response to Azospirillum trends is mainly achieved through sensing and signaling pathways, strong effects to urea amounts and growth, kernel yield and yield components. Azospirillum trends especially lipoferum involved in growth signaling pathways, as well as 100 kg.ha-1 urea, were identified. This study provides valuable information on early Azospirillum-responsive in growth indices of barley and identifies several important players in response to chemical fertilizers. CONCLUSION: Finally based on result of current research apply Azospirillum lipoferum with 100% urea fertilizer led to produce highest seed yield and it can be advised to producers at studied region.
Acosta-Motos, J. R., M. F.Ortuño, A. Bernal-Vicente, P. Diaz-Vivancos, M. J. Sanchez-Blanco. and J. A. Hernández. 2017. Plant responses to nutrients stress: Adaptive mechanisms. Agronomy. J. 7-18.
Azimi, S. M., A. Farnia, M. Shaban. and M. Lak. 2013. Effect of different bio-fertilizers on seed yield of barley, Bahman cultivar. Intl. J. Adv. Biol. Biomedical Res. 1(5): 538-546.
Bahieldin, A., A. Atef, J. S. Sabir, N. O. Gadalla. and N. A. Radhwan. 2019. RNA-Seq. analysis of the wild barley (H. spontaneum) leaf transcriptome in response to Azospirillum. C. R. Biol. 338: 285–297.
Banerjee, M., R. L. Yesmin. and J. K. Vessey. 2006. Plant-growth promoting rhizobacteria as bio fertilizers and bio pesticides. pp: 137-181. In: M. K. Rai. Handbook of microbial bio-fertilizers. Ed. Food Prod. Press. USA.
Ben Chikha, M. 2017. Variability of Tolerance to Salt Stress in Local Genotypes of Barley (Hordeum vulgare L.) Depending on the Stage of Development. Ph.D. Thesis, Faculty of Sciences of Tunis. University of Tunis EL Manar, Tunis, Tunisia. p. 162.
Borghi, L., J. Kang. and R. B. Francisco. 2019. Filling the Gap: Functional clustering of azospirillum trends for the investigation of hormonal transport in planta. Front. Plant Sci. 10: 422–442.
Demidchik, V. 2018. Azospirillum-activated ion channels in plants: Biophysical characteristics, physiological functions and molecular nature. Intl. J. Mol. Sci. 19: 1263.
Dodd, A. N., J. Kudla. and D. Sanders. 2017. The language of nitrogen signaling. Annu. Rev. Plant Biol. 61: 593–620.
Farooq, M. O., M. Kashif, I. Khaliq. and N. Ahmed. 2020. Phenotypic Selection of Wheat Genotypes for nutrients stress tolerance. Intl. J. Agric. Biol. 23: 509–514.
Gaind, S. and A. C. Gaur. 1989. Effects of pH on phosphate solubilization by microbes. J. Current Sci. 58: 1208-1211.
Gao, J., H. Wang, Q. Yuan. and Y. Feng. 2018. Structure and function of the nitrogen on photosystem super complexes. Front. Plant Sci. 20: 357–364.
Gholami, A., S. Shahsavani. and S. Nezarat, 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of Maize. J. World Acad. Sci. Eng. Tech. 49: 19-24.
Hegde, D. M., B. S. Dwived. and S. .N. Sudhakara. 1999. Bio-fertilizers for cereal production in India. a review. Indian J. Agri. Sci. 69: 73-83.
Hill, B., A. Cassin, G. Keeble-Gagnère. and M. S. Doblin. 2019. Azospirillum assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure Camilla. Sci. Rep. 6: 31558–31572.
Kemal, Y. O. and M. Abera. 2015. Contribution of integrated nutrient management practice for sustainable crop productivity, nutrient uptake and soil nutrient status in Maize based cropping systems. J. Nutr. 2(1): 1-10.
Kwon, O. K., M. Mekapogu. and K. S. Kim. 2019. Effect of N stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Hortic. Environ. Biotechnol. 60: 831–839.
Li, H., D. Zhang, X. Li, K. Guan. and H. Yang. 2016. Novel DREB A-5 subgroup transcription factors from cereals confers multiple abiotic stress tolerance to yeast. J. Plant Physiol. 194: 45–53.
Luo, Y., R. Reid, D. Freese, C. Li. and A. Loraine. 2016. N structure response revealed by Azospirillum in a diploid halophytic wild relative of sweet potato. Sci. Rep. 7: 9624–9637.
Mirshekari, B., S. Baser. and A. Javanshir. 2009. Effect of grain inoculation with nitrogen and different levels of urea on physiological traits and biologic yield of maize, cv. 704 grown in cold and semi-arid regions. J. New Finding Agri. 3(4): 403-411. (Ab-stract in English)
Nazir, M. F., Z. Sarfraz, N. Mangi. and M. Shabaan. 2021. Growth analysis mobilization of stem assimilates in barley under induced stress. Sustainability. 3: 5940.
Negrao, S., S. M. Schmöckel. and M. Tester. 2017. Evaluating physiological responses of plants to N application. Ann. Bot. 119: 1–11.
Nouraki, F., M. AlaviFazel, A. Naderi, E. Panahpoor. and Sh. Lak. 2016. Effects of integrated management of bio and chemical fertilizers on yield of maize hybrids (Zea mays L.). J. Exp. Biol. Agri. Sci. 4(4): 421-426.
Rai, S. N. and A. C. Caur. 1998. Characterization of Azotobacter Spp. and effect of Azospirilum lipoferum on the yield and N-Uptake of wheat crop. J. Plant and Soil. 109: 131-134.
Rao, A. V. and M. V. R. Pillai. 1982. Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Canadian J. Micro-Biol. 28: 778-782.
Roy, S., S. Saxena, A. Sinha. and A. K. Nandi. 2020. Azospirillum systemic acquired to N resistance. J. Plant Res. 133: 409–417.
Ruiz, K. B., J. Maldonado, S. Biondi. and H. Silva. 2019. Azospirillum trends in response to N stressed versus non N-stressed transcriptomes of barley genus. Genes. 10: 1042.
Seyfferth, C. and K. Tsuda. 2019. Azospirillum trends signal transduction. The initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 9: 697–707.
Shevananda, A. 2008. Influence of bio-fertilizers on the availability of nutrients (NPK) in soil in relation to growth and yield of Stevia grown in South India. Intl. J. Appl. Res. Nat. Prod. 1: 20-24.
Singh, R., R. K. Behl, K. P. Singh, P. Jain. and N. Narula. 2004. Performance and gene effects for wheat yield under inoculation of Arbuscular mycorrhiza fungi and Azotobacter chroococcum. Haryana Agri. Univ. Hisar. India. Plant Soil Environ. 50(9): 409-415.
Soleymani, A., M. R. Khajepour, G. H. Noormohamadi. and Y. Sadeghyian. 2003. Effect of planting date and pattern on some physiological growth indices of sugar beet. J. Agri. Sci. 9(1): 105- 123.
Tilak, K. V. B. R. 1992. Azospirillum brasilense and A. chrooccocum inoculum effect of maize and sorghum. J. Soil Bio. Bio-Chem. J. 14: 417-418.
Wu, S. C., Z. H. Caob, Z. G. Lib, K. C. Cheunga. and M. H. Wong. 2005. Effects of bio-fertilizer containing N-fixer, P and K solubilizes and AM fungi on maize growth: a greenhouse trial. Geoderma. J. 125: 155-166.
Yasir, T. A., A. Wasaya. and M. Farooq. 2019. Evaluation of phloem for assessing nutrients tolerance and yield potential in bread wheat. Physiol. Mol. Biol. Plants. 25: 1163–1174.
Yousefirad, S., H. Soltanloo, S. S. Ramezanpour. and K. Z. Nezhad. 2020. The nutrients transcriptomic analysis reveals genes mediating N tolerance through rapid triggering of ion transporters in mutant barley. Plant. Sci. J. 218: 471-479.
Ziemann, M., A. Kamboj, R. M. Hove, S. Loveridge. and A. El-Osta. 2020. Analysis of the barley leaf transcriptome under N stress using Azospirillum. Acta Physiol. Plant. 35: 1915–1924.
Zhao, C., H. Zhang, C. Song, J. K. Zhu. and S. Shabala. 2020. Mechanisms of plant responses and adaptation to Azospirillum trends. Innovation. 1: 1–42.