Salt Tolerance in Rice Cultivars and Changes in Sodium and Potassium Ions
Subject Areas : Journal of Crop Nutrition Science
1 - Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
Keywords: Stress, varieties, Na+/K+ ratio, Macro Nutrient,
Abstract :
Salinity is an environmental stress that limits growth and development in plants. Due to high salinity in Khuzestan soils it is necessary to identify cultivars with appropriate yield that are compatible with Khuzestan conditions. This experiment was done to evaluate three rice cultivars for salinity tolerance at seedling stage by measuring the absorption of sodium and potassium ions and the ratio of Na+/K+ in the shoots and roots of the rice crop. Experiments were carried out under controlled conditions and in hydroponics culture media. Treatments included three rice cultivars (Amol3, Anbouri and Shahpasand) and five levels of salinity (control: without salt addition, salinity levels of 25, 50, 75 and 100 mM NaCl) according a factorial experiment based on completely randomized design with three replications. Acid digestion method was used to measure sodium and potassium ions in plant tissues. The amount of sodium in the root and also shoot of three cultivars showed a significant difference (p≤ 0.05, p≤ 0.01). Shahpasand showed the lowest amount of sodium in its shoots compare to the other two varieties. The results showed that Na+/K+ ratio was significantly different in three cultivars under salinity conditions. Shahpasand showed the lowest and Anbouri showed the highest ratios. Shahpasand can be considered as a salt tolerant cultivar and also a salt tolerant parent in hybridization and breeding programs for producing new salt tolerant cultivars.
Ashraf, M. and A. Khanum. 1997. Relationship between ion accumulation and growth in two-spring wheat lines differing in salt tolerance at different growth stages. J. Agron. Crop Sci. 178: 39-51.
Benito, B., R. Haro, A. Amtmann, T. A. Cuin. and I. Dreyer. 2014. The twins K+ and Na+ in plants. J. Plant Physiol. 171(9): 723-731.
Bhusan, D., D. K. Das, M. Hossain, M. Murata. and Md. Anamul Hoque. 2016. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Aust. J. Crop Sci. 10(1): 50-56.
Celik, H., B. B. Asik, S. Gurel. and A. V. Katkat. 2010. Potassium as an intensifying factor for iron chlorosis. Intl. J. Agric. Biol. 12: 359-364.
Chen, Z. C., N. Yamaji, T. Horie, J. Che, J. Li, G. An. and J. F. Ma. 2017. A Magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Am. Soc. Plant Biol. Published July 2017. Doi: https://doi.org/10.1104/pp.17.00532.
Deinlein, U., A. B. Stephan, T. Horie, W. Luo, G. Xu. and J. I. Schroeder. 2014. Plant salt tolerance mechanisms. Trends Plant Sci. 19(6): 371-379.
Doi:10.1016/j.tplants.2014.02.001.
El-Defan T. A. A., H. M. A. El-Kholi, M. G. M. Rifaat. and A. E. A. Allah. 1999. Effect of soil and foliar application of potassium on yield and mineral content of wheat grains grown in sandy soils. Egyptian J. Agric. Res. 77(2): 513-522.
Eynard, A., R. Lal. and K. Wiebe. 2005. Crop response in salt-affected soils. J. Sustain. Agric. 27: 5-50.
Far Ebrahimi, R., P. Rahdari, H. Shokri Vahed, P. Shahinrokhsar. and Sh. Babazadeh. 2012. Rice response to different methods of potassium application under salinity stress condition. American-Eurasian J. Agric. Environ. Sci. 12(11): 1441-1445.
Fakhrfeshani, M., F. Shahriari-Ahmadi, A. Niazi, N. Moshtaghi. and M. Zare-Mehrjerdi. 2015. The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte. J. Plant Mol. Breed. 3(2): 1-10.
Golldack, D., F. Quigley, C. B. Michalowski, U. R. Kamasani. and H. J. Bohnert. 2003. Salinity stress- tolerant and sensitive rice (Oryza sativa L.) regulate AKT1- type potassium channel transcripts differently. J. Pl. Mol. Bio. 51: 71-81.
Gorham J. 2007. Sodium, In: Barker, A. V. and D. J. Pilbeam (Eds.), Handbook of plant nutrition. CRC Press. Taylor and Francis Group. 569-583.
Hall, D., A. R. Evans, H. J. Newbury. and J. Pritchard. 2006. Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J. Exp. Bot. 57(5): 1201-10.
Harvey, D. M. R. 1985. The effects of salinity on ion concentrations within the root cells of Zea mays L. J. Planta. 165: 242-248. http://dx.doi.org/101007/BF00395047.
Heuer, B. and A. Nadler. 1998. Physiological response of potato plants to soil salinity and water deficit. J. Plant Sci. 137(1): 43-51.
Hoang, T. M. L., L. Moghaddam, B. Williams, H. Khanna, J. Dale. and S. G. Mundree. 2015. Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death, Front Plant Sci. 6: 175-185. Doi: 10.3389/fpls.2015.00175.
Horie, T., K. Yoshida, H. Nakayama, K. Yamada, S. Oiki. and A. Shinmyo. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27(2): 129-138.
Huang, S., W. Spielmeyer, E. S. Lagudah. and R. Munns. 2008. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J. Exp. Bot. 59(4): 927-937.
Jinwoong, C. and K. Choongsoo. 1998. Effect of NaCl concentration on photosynthesis and mineral content of barley seedlings under solution culture. Korean J. Crop Sci. 43(3): 152-156.
Kao, W. Y. 2011. Na, K and Ca contents in roots and leaves of three glycine species differing in response to NaCl treatments. J. Taiwania. 56(1): 17-22.
Khan, A. A., S. A. Rao. and T. McNeilly. 2003. Assessment of salinity tolerance based upon seedling root growth response function in maize (Zea mays L.). J. Euphetica. 131: 81-89.
Kipps, M. S.1983. Production of field crops. Chapter 17. pp: 335-347.
Khush, G. S. 2005. What it will take to feed 5 billion rice consumers in 2030. J. Plant Mol. Biol. 59: 1-6.
Kranto, S., S. Chankaew, T. Monkham, P. Theerakulpisut. and J. Sanitchon. 2016. Evaluation for Salt Tolerance in Rice Using Multiple Screening Methods. J. Agri. Sci. Tech. 18: 1921-1931.
Maathuis, F. J. and A. Amtmann. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. J. Annals of Bot. 84(2): 123-133.
Matsushita, N. and T. Matoh. 1991. Characterization of Na+ exclusion mechanisms of salt tolerant reed plants in comparison with salt sensitive rice plants. J. Physiol. Plantarum. 83: 170-176.
Miransari, M. and D. L. Smith. 2007. Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule geniste in under field conditions. J. Plant Nutr. 30: 1967-92.
Momayezi, M. R., A. R. Zaharah, M. M. Hanafi. and I. Mohd Razi. 2009. Agronomic characteristics and proline accumulation of Iranian rice genotypes at early seedling stage under sodium salts stress. Malays. J. Soil Sci. 13: 59-75.
Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167(3):645-63.
Munns, R., A. J. James. and A. Lauchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1025–1043.
Nelson, W. L. 1978. Influence of K on tolerance to stress (North American experience). In: Sekhon GS (Eds) Potassium in soils and crops, Potas. Res. Inst. India. New Delhi, pp: 203-211.
Nieves-Cordones, M., F. Aleman, V. Martinez. and F. Rubio. 2014. K+ uptake in plant roots. The systems involved their regulation and parallels in other organisms. J. Plant Physiol. 171(9): 688-695.
Nishimura, T., S. Chaum, M. Takagaki. and K. Ohyama. 2011. Survival percentage, photosynthetic abilities and growth characters of two indica rice (Oryza sativa L. spp. indica) cultivars in response to isosmotic stress. Span. J. Agric. Res. 9: 262-270.
Noaman, M. N. 2004. Effect of potassium and nitrogen fertilizers on the growth and biomass of some halophytes grown under high levels of salinity. J. Agro. 3(1): 25-30.
Oleary, J. W. 2002. Adaptive components of salt tolerance, In: Pessarakli M., (Ed.), Handbook of plant and crop physiology. Marcel Dekker Inc. New York. Basel. USA.
Parida, A. K. and A. B. Das. 2005. Salt tolerance and salinity effects on plants: A review. J. Ecotoxicol. Environ. Safe. 60: 324-349.
Puram, V. R. R., J. Ontoy, S. Linscombe. and P. K. Subudhi. 2017. Genetic Dissection of Seedling Stage Salinity Tolerance in Rice Using Introgression Lines of a Salt Tolerant Landrace Nona Bokra. J. Heredity. 108(6): 658-670.
Qadar, A. 1991. Differential sodium accumulation in shoots of rice (Oryza sativa) genotypes in relation to their sodicity tolerance. Indian J. Agric. Sci. 61: 40-42.
Rahneshan, Z., F. Nasibi. and A. Ahmadi Moghadam. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant-Environ. Interactions. 13(1): 17-27.
Roy, S. J., E. J. Tucker. and M. Tester. 2011. Genetic analysis of abiotic stress tolerance in crops. J. Current Opinion in Plant Biol. 14(3): 232-239.
Sairam, R. K., K. V. Veerabhadra Rao. and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. J. Plant Sci. 163: 1037-1046.
Saqib, M., J. Akhtar, R. H. Qureshi, M. Aslam. and S. Nawas. 2000. Effect of salinity and sodicity on growth and ionic relations of different wheat genotypes. Pakistan J. S. Sci. 18(1-4): 99-104.
Sharma, S. K. 1986. Mechanisms of salt tolerance in rice varieties differing in sodicity, Plant soil. 93: 141-142.
Shannon, M. C. and C. M. Grieve. 1999. Tolerance of vegetable crops to salinity. Science Horticulture. J. 78: 5-38. http://dx.doi.org/101016/S0304-4238(98)00189-7.
Siringam, K., N. Juntawong, S. Chaum. and C. Kirdmanee. 2011. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under iso osmotic conditions. Afr. J. Biotech. 10: 1340-1346.
Sobahan, M. A., N. Akter, M. Ohno, E. Okuma, Y. Hirai, C. Mori, Y. Nakamura. and Y. Murat. 2012. Effects of exogenous proline and glycine betaine on the salt tolerance of rice cultivars. J. Bio-Sci. Bio-Technol. Bio-Chem. 76(8): 1568–1570.
Su, Q., S. Feng, L. An. and G. Zhang. 2007. Cloning and functional expression in Saccharomyces cereviae of a K+ transporter, AlHAK, from the graminaceous halophyte, Aeluropus littoralis. J. Biotech. Letters. 29(12): 1959-1963.
Taiz, L. and E. Zeiger. 2002. Plant Physiology. Sinauer Associates Inc. Sunderland. Massachusetts. USA.
Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. J. Annals of Bot. 91: 503-527.
Very, A. A., M. Nieves-Cordones, M. Daly, I. Khan, C. Fizames. and H. Sentenac. 2014. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? J. Plant Physiol. 171(9): 748-769.
Yeo, A. R. and T. J. Flowers. 1983.Varietal differences in the toxicity of sodium ions in rice leaves. Physiol. Plantarum. J. 59: 189-195.
Yoshida, S. and V. Coronel. 1976. Nitrogen nutrition, leaf resistance and leaf photosynthetic rate of the rice plant. J. Soil Sci. Nutr. 22: 207-211.
Yoshida, S., J. H. Forno, H. Cock. and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice. Intl. Rice Res. Institute. Los Banos. Laguna. Philippines. 83p.
Zafar, S. A., S. Shokat, H. G. M. Ahmed, A. Khan, A. Zeshan. and R. M. Atif. 2015. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. J. Adv. Life Sci. 2(4): 142-149.