ارزیابی مدل AquaCrop در شبیه سازی عملکرد و کارایی مصرف آب سه رقم ذرت دانه ای در شرایط اقلیمی گرم و خشک
محورهای موضوعی :
اکوفیزیولوژی گیاهان زراعی
یاسر اسماعیلیان
1
*
,
محمود رمرودی
2
1 - گروه کشاورزی و منابع طبیعی، مجتمع آموزش عالی گناباد، گناباد، ایران
2 - دانشیار گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
تاریخ دریافت : 1395/12/25
تاریخ پذیرش : 1397/08/04
تاریخ انتشار : 1397/08/01
کلید واژه:
عملکرد,
تنش خشکی,
شبیه سازی,
کارایی مصرف آب,
مدل AquaCrop,
چکیده مقاله :
امروزه، مدل های رشد گیاهان نقش مهمی در تخمین رشد و عملکرد محصول، برنامه ریزی تولید محصولات کشاورزی، اقتصاد تولید و تعیین راهبردهای تأمین محصولات دارند. در این پژوهش، مدل AquaCrop برای سه رقم ذرت DC 370، ZP 677 و SC 704 تحت فراهمی سطوح متفاوت آب (عدم تنش، تنش ملایم و تنش شدید) و نیتروژن (صفر، 120، 180 و 240 کیلوگرم در هکتار) مورد واسنجی و ارزیابی قرار گرفت. برای اعتبارسنجی این مدل از ریشه میانگین مربعات خطای نرمال شده (nRMSE) و ضریب تعیین (R2) استفاده شدند. نتـایج نشـان داد که مدل با دقت بالایی عملکرد دانه ارقام ذرت را شبیه سازی کرد. اما دقت شبیه سازی با افزایش تنش خشکی کاهش یافت. کمترین nRMSE (5/7 %) و بیشترین R2 (93/0) محاسبه شده از رقم ZP 677 به دست آمدند. مدل با خطای بیشتری عملکرد بیولوژیکی ذرت را نسبت به عملکرد دانه شبیه سازی نمود. هرچند روند تغییرات آن در نتیجه تغییر در سطح تنش خشکی و یا کود نیتروژن به خوبی و مطابق با آزمایش مزرعه ای پیش بینی شد. nRMSE بین 8/6 و 9/10 درصد بدست آمد، درحالی که R2 بین 82/0 تا 92/0 متغیر بود. مدل AquaCrop با دقت قابل قبولی تغییرات کارایی مصرف آب ارقام ذرت را شبیه سازی کرد، به طوری که با افزایش تنش خشکی و کاربرد کود نیتروژنی میزان آن افزایش یافت. البته، نتایج خروجی مدل در اغلب حالات کمتر از مقادیر اندازه گیری شده بودند. بهترین نتیجه ارزیابی مدل (4/6%nRMSE= و 93/0R2=) از رقم ZP 677 حاصل شد. با توجه به نتایج به دست آمده، می توان مدل AquaCrop را با درصد اطمینان بالایی برای شبیه سازی عملکرد ذرت دانه ای در نواحی اقلیمی مشابه با این آزمایش را به کار برد.
چکیده انگلیسی:
Nowadays, crop simulation models have a key role in crop growth and yield estimation, production planning, production economy and identifying strategies for crops supply. In this research, AquaCrop model was calibrated and evaluated for three corn hybrids; (DC 370, ZP 677, and SC 704) under different levels of water supply (non stress, mid stress, and severe stress) and nitrogen rates (0, 120, 180, and 240 kg N/ha). For model validation, normalized root mean square error (nRMSE) and determination of coefficient (R2) were used. Result showed that the model simulated grain yield of corn hybrids with high precision. Simulation precision decreased with increasing drought stress. The lowest nRMSE (7.5%) and highest R2 (0.93) were obtained from ZP 677 hybrid. The model simulated corn biological yield with more deviation percentage than grain yield. However, it´s variation trend due to variation in drought stress level or nitrogen fertilizer predicted well according to field experiment. nRMSE ranged from 6.8 and 10.9, while R2 varied from 0.82 to 0.92. AquaCrop model simulated the variation of water use efficiency of corn hybrids with reasonable accuracy, so that it´s value increased with increasing drought stress and nitrogen fertilizer application, while, model outputs in most situations were lower than measured values. The best model validation result (nRMSE=6.4% and R2= 0.93) obtained from ZP 677 hybrid. According to the results were obtained, AquaCrop model can be applied with high reliability for simulating corn yield under similar climatic regions of this experiment.
منابع و مأخذ:
· Abedinpour, M., A. Sarangi, T.B.S. Rajput, M. Singh, H. Pathak, and T. Ahmad. 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management. 110: 55-66.
· Abrha, B., N. Delbecque, D. Raes, A. Tsegay, M. Todorovic, L. Heng, E. Vanuytrecht, S. Geerts, M. Garcia-Vila, and S. Deckers. 2012. Sowing strategies for barley (Hordeum vulgare L.) based on modelled yield response to water with AquaCrop. Experimental Agriculture. 48(2): 252-271.
· Alizadeh, H.M., B. Nazari, M. Parsinezhad, H. Ramezani etedali, and R. Janbaz. 2010. Evaluation of AquaCrop model under water deficit management in Karaj region. Iranian Journal of Irrigation and Drainage. 2(4): 273-283. (In Persian).
· Araya, A., S. Habtub, K.M. Hadguc, A. Kebedea, and T. Dejene. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management. 97: 1838-1846.
· Bannayan, M, and G. Hoogenboom. 2009. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research. 111: 290-302.
· Boote, K.J., J.W. Jones, and N.B. Pickering. 1996. Potential uses and limitations of crop models. Agronomy Journal. 88: 704-716.
· Ebrahimi, M., V.R. Verdinejad, and A. Mjnooni Heris. 2015. Dynamic simulation through AquaCrop of maize growth under different management decisions of water application and nitrogen fertilizer use. Iranian Journal of Soil and Water Research. 46(2): 207-220. (In Persian).
· García-Vila, M, and E. Fereres. 2012. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy. 36: 21-31.
· Geerts, S, and D. Raes. 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 96: 1275-1284.
· Geerts, S., D. Raes, and M. Garcia. 2010. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management. 98(1): 213-216.
· Greaves, G.E, and Y.M. Wang. 2016. Assessment of FAO AquaCrop model for simulating maize growth and productivity under deficit irrigation in a tropical environment. Water. 8(12): 1-18.
· Heng, L.K., S.R. Evett, T.A. Howell, and T.C. Hsiao. 2009. Calibration and testing of FAO AquaCrop model for rainfed and irrigated maize. Agronomy Journal. 101: 488-498.
· Howell, T. 2001. Enhancing water use efficiency in irrigated agriculture. Agronomy Journal. 93: 281-189.
· Hsiao, T.C., L.K. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres. 2009. AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal. 101: 448-459.
· Khalili, N., K. Davary, A. Alizadeh, M. Kafi, and H. Ansari. 2014. Simulation of rainfed wheat yield using AquaCrop model, case study: Sisab. Rainfed Researches Station, Northern Khorasan. Journal of Water and Soil. 28(5): 930-939.
· Mhizha, T. 2010. Increase of yield stability by staggering the sowing dates of different varieties of rainfed maize in Zimbabwe. Ph.D. thesis. KU Leuven. Belgium. 166p.
· Mohammadi, M., K. Davari, B. Ghahraman, H. Ansari, and A. Haghverdi. 2015. Calibration and validation of AquaCrop model for simulation of spring wheat yield under simultaneous salinity and water stress. Journal of Water Research in Agriculture. 29(3): 277-295. (In Persian).
· Nagaz, K., I. Toumi, M.M. Masmoudi, and N.B. Mechilia. 2008. Soil salinity and barley production under full and deficit irrigation with saline water in arid conditions of Southern Tunisia. Research Journal of Agronomy. 2: 90-95.
· Oktem, A., M. Simsek, and A.G. Oktem. 2003. Deficit irrigation effects on sweet maize (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region I. Water-yield relationship. Agricultural Water Management. 61: 63-74.
· Paredes, P., J.P. de Melo-Abreu, I. Alves, and L.S. Pereira. 2014. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management. 144: 81-97.
· Pereira, L.S., P. Paredes, E.D. Sholpankulov, O.P. Inchenkova, P.R. Teodoro, and M.G. Horst. 2009. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management. 96: 723-735.
· Raes, D., P. Steduto, T.C. Hsiao, and E. Fereres. 2010. Reference manual AquaCrop (Version 3.1). Rome, Italy: Land and Water Development Division. FAO, 89p.
· Salemi, H.R., M.A.M. Soom, S.F. Mousavi, A. Ganji, T.S. Lee, M.K. Yusof, and V.R. Verdinejad. 2011a. Irrigated silage maize yield and water productivity response to deficit irrigation in an arid region. Polish Journal of Environmental Studies. 20(5):1295-1303.
· Salemi, H.R., M.A.M. Soom, T.S. Lee, S.F. Mousavi, A. Ganji, and M.K. Yusoff. 2011b. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal Agricultural Research. 6: 2204-2215.
· Shrestha, N., D. Raes, E. Vanuytrecht, and S.K. Sah. 2013. Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management. 122: 53-62.
· Sinclair, T.R, and N.G. Seligman. 1996. Crop modeling: From infancy to maturity. Agronomy Journal. 88: 698-704.
· Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop. The FAO crop model to predict yield response to water. Agronomy Journal. 101: 426-437.
Todorovic, M., R. Albrizio, L. Zivotic, M.T. Abi Saab, C. Stöckle, and P. Steduto. 2009. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal. 101: 509-521.
_||_