ارزیابی عملکرد دانه و برخی صفات فیزیولوژیک رقم¬های گندم نان در شرایط تنش کم¬آبی پس از گلدهی در منطقه کرمانشاه
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیراضیه تیموری 1 , محسن سعیدی 2 * , سعید جلالی هنرمند 3 , محمداقبال قبادی 4 , مختار قبادی 5
1 - دانشآموخته کارشناسی ارشد زراعت، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.
2 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسیکشاورزی، دانشگاه رازی، کرمانشاه، ایران.
3 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.
4 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.
5 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسیکشاورزی، دانشگاه رازی، کرمانشاه، ایران.
کلید واژه: پروتئین, دمای برگ, سرعت فتوسنتز, وزن هکتولیتر, هدایت روزنه¬ایت,
چکیده مقاله :
وقوع تنش کم¬آبی پس از گرده¬افشانی در شرایط کشت گندم، یکی از مهم¬ترین عامل کاهش¬دهنده عملکرد در اغلب مناطق کشاورزی ایران است. بر این اساس، این طرح به منظور بررسی اثر تنش کم¬آبی پس از گرده¬افشانی روی عملکرد دانه و تبادلات گازی ارقام گندم نان در مزرعه تحقیقاتی دانشگاه رازی به¬صورت طرح کرت¬های خرد شده در قالب طرح بلوک¬های کامل تصادفی در سه تکرار اجرا شد. در این شرایط، فاکتور اصلی تیمار تنش کم¬آبی در دو سطح شامل 1) تنش کم¬آبی پس از گرده¬افشانی و 2) بدون تنش و فاکتور فرعی شامل 10 رقم گندم نان (زارع، پارسی، سیوند، پیشتاز، بهار، آذر2، بزوستایا، گاسپارد، سیروان و مرودشت) بودند. نتایج نشان دادند که اعمال تنش کم¬آبی پس از گرده¬افشانی سبب کاهش معنی¬دار عملکرد دانه، تعداد دانه در سنبله، وزن هزار دانه، وزن هکتولیتر و عملکرد بیولوژیک به ترتیب به میزان 46/5، 25/10، 76/17، 1/1 و 29/3 درصد شد، ولی بر تعداد سنبله در مترمربع بی¬تأثیر بود و طی تنش کم¬آبی بیشترین و کمترین مقادیر عملکرد دانه به ارقام پارسی و بزوستایا به ترتیب با مقادیر 11110 و 6080 کیلوگرم در هکتار تعلق داشت. همچنین، اعمال تنش کم¬آبی سبب کاهش سرعت فتوسنتز، محتوی کلروفیل a، کلروفیل b، کلروفیل کل و پروتئین¬های محلول برگ¬ها به میزان 67/16، 03/14، 94/24 و 10/12 درصد و افزایش دمای سطح برگ به میزان 58/12 درصد گردید. به¬طورکلی، ارقام سیوند و پارسی به¬عنوان ارقام پرمحصول و ارقام زارع، مرودشت، سیروان و بهار به¬عنوان ارقام کم محصول در هر دو شرایط رطوبتی شناسایی شدند.
In wheat cultivation areas of Iran, post anthesis water stress is the main factors that declined grain yield production. Hence, in order to evaluate the effect of post anthesis water stress on formation of grain, physiological changes and gas exchange variables of bread wheat cultivars (Triticum aestivum L.), this study was conduct in research farm of Campus of Agriculture and Natural Resources, Razi university, Kermanshah, Iran at 2013-14 crop year. In experiment was used a split plot experiment based on randomized complete block design with three replications. In this experiment, main plot was water regimes in two levels (post anthesis water stress and control) and sub plot was 10 bred wheat cultivars (Zare, Parsi, Sivand, Pishtaz, Bahar, Azar2, Bezostaya, Gaspard, Sirvan and Marvdasht). The results showed that, post anthesis water stress significantly decreased grain yield, number of grains per spike, thousand grain weight, hectoliter weight and biomass production (5.46, 10.25, 17.76, 1.1 and 3.29%, respectively) but had no significant effect on no of spike per m2. In post anthesis water stress, Parsi and Bezostaya cultivars had the highest and lowest grain yield production (11110 and 6080 kg.ha-1, respectively). Also, post anthesis water stress significantly decreased photosynthetic rate, chlorophyll a, chlorophyll b, total chlorophyll and water-soluble protein by 16.67, 14.03, 24.94 and 12.10% respectively, but significantly increased leaf surface temperature by 12.58%. Bezostaya and Marvdasht cultivars had the highest and lowest photosynthesis rate, respectively, as well as Gaspard and Bahar cultivars had the highest and Marvdasht cultivar had the least soluble protein content. In general, Sivand and Parsi cultivars were identified as high yielding cultivars and Zare, Marvdasht, Sirvan and Bahar cultivars as low yield cultivars.
• Abate G.T., T. Bernard, A.D. Brauw, and N. Minot. 2018. The impact of the use of new technologies on farmers’ wheat yield in Ethiopia: evidence from a randomized control trial. Journal of Agricultural Economy. 49:409–421.
• Abdoli, M., and M. Saeidi. 2012. Using different indices for selection of resistant wheat cultivars to post anthesis water deficit in the west of Iran. Annals of Biological Research. 3(3): 1322-1333.
• Abdoli, M., M. Saeidi, S. Jalali-Honarmand, S. Mansourifar, and M.E. Ghobadi. 2013. Evaluation of some physiological and biochemical traits and their relationships with yield and its components in some improved wheat cultivars under post-anthesis water deficit. Environmental Stresses in Crop Sciences. 6(1): 47-63. (In Persian).
• Ahmadi, A., M. Joudi, A. Tavakoli, and M. Ranjbar. 2009. Investiation of yield and its related morphological traits responses in wheat genotypes under drought stress and irrigation conditions. Journal of Science and Technology of Agriculture and Natural Resources. 12(46): 155-166. (In Persian).
• Ahmed, M., M.A. Aslam, F. Hassan, R. Hayat, and S. Ahmad. 2019. Biochemical, physiological and agronomic response of wheat to changing climate of rainfed areas of Pakistan. Pakistan Journal of Botany. 51: 535-551.
• Akram, Z., S.U. Ajmal, and M. Munir. 2008. Estimation of correation coefficient among some yield parameter of wheat under rainfed conditions. Pakistan Journal of Botany. 40: 1777-1781
• Akura, M., and S. Ceri. 2011. Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Zemdirbyste. 98(2): 166-157.
• Alimohamadi, M., A. Rezaei, and A.M. Meibodi. 2007. Evaluation of physiological traits and yield of ten cultivars of bread wheat in two irrigation regimes. Journal of Science and Technology of Agriculture and Natural Resources. 12: 107-120. (In Persian).
• Alonso, R., S. Elvira, F.J. Castillo, and B.S. Gimeno. 2001. Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environment. 24: 905-916.
• Altman, A. 2003. From plant tissue culture to biotechnology: scientific revolution, abiotic stress tolerance and forestry. In Vitro Cell Development of Biotechnology Plant. 39: 75-84.
• Anonymus. 2016. FAO. FAO data based [online]. Available at, http://faostat.fao.org
• Anonymus. 2017. Agricultural Statistics. Deputy of planning and economics. Information and Communication Technology Center, Iran. (In Persian).
• Ardalani, S., M. Saeidi, S. Jalali Honarmand, M.E. Ghobadi, and M. Abdoli. 2014. The physiological responses and antioxidant enzyme activity in bread wheat genotypes under post anthesis drought tension. Crop Physiology Journal. 21: 45-59. (In Persian).
• Ardalani, S., M. Saeidi, S. Jalali Honarmand, M.E. Ghobadi, and M. Abdoli. 2015. Effect of post anthesis drought stress on some agronomic and physiological traits related to source strength in four bread wheat genotypes. Cereal Research. 5(1): 45-65. (In Persian).
• Ashraf, M.Y., A.R. Azmi, A.H. Khan, and S.A. Ala. 1994. Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat. Acta Physiologia Plantarum. 16(3): 185-191.
• Barr, H.D., and P.E. Weatherley. 1962. Are examination of the relative turgidity technique for estimating water deficits in leaves? Australian Journal of Biological Sciences. 15: 413-428
• Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principles of protein dyebinding. Analytical Biochemistry. 72: 248-254.
• Brevedan, R.E., and D.B. Egli. 2003. Short periods of water stress during seed filling leaf senescenc and yield of Soybean. Crop Science. 43: 2083-2088.
• Castrillo, M., and A.M. Calcargo. 1989. Effects of water stress and rewatering on ribulose-I, 5-bisphosphate carboxylase activity, and chlorophyll and protein contents in two cultivars of tomato. Journal of Horticultural Sciences. 64(6): 717-724.
• Condon, A.G., R.A. Richards, G.J. Rebetzke, and G.D. Farouhar. 2002. Improving instrinsic water use efficiency and crop yield. Crop Science. 42: 122-131.
• Dias de Oliveira, E., H. Bramley, K.H.M. Siddique, S. Henty, J. Berger, and J.A., Palta. 2013. Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Functional Plant Biology. 40:160–171.
• Ercoli, L., L. Lulli, M. Mariotti, A. Masoni, and I. Arduini. 2007. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy. 28: 138-147.
• Fleury, D., S. Jefferies, H. Kuchel, and P. Langridge. 2010. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany. 61(12): 3211-3222.
• Flexas, J., and H. Medrano. 2002. Drought-inhibition of photosynthesis in C3 plants: Stomatal and nonstomatal limitation revisited. Annals of Botany. 89: 183-189.
• Gale, A., J. Csiszar, I. Tari, and L. Erdei. 2002. Change in water and chlorophyll fluorescence parameters under osmotic stress in wheat cultivars. Proceeding of the 7th Hungarian Congress on Plant Physiology. pp. 85-86.
• Hong Bo, S., L. Zong Suom, and S. Ming An. 2005. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotype at maturation stage. Colloids. Surface Biochemistry. 7: 13-45.
• Khodabande, N. 2013. Cereals. University of Tehran Publications, Tehran, Iran. 538 p. (In Persian).
• Kirnak, H., C. Kaya, I. Tas, and D. Higgs. 2001. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in egg plants. Plant Physiology. 27: 34-46.
• Lawlor, D.W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment. 25: 275-294.
• Lichtenthaler, H., and A.R. Wellburn. 1983. Determination of total carotenoids and chlorophyll a and chlorophyll b leaf extracts in different solvents. Biochemical Society Transactions. 603: 591-592.
• Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 4(8): 580-585.
• Mary, J.G., C.S. Jeffery, O.B. Katherine, and S. Edward. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science. 41: 327-335.
• Mirbahar, A.A., G.S. Markhand, A.R. Mahar, S.A. Abro, and N.A. Kanhar. 2009. Effect of water stress on yield and yield components wheat (Triricom Aestivum L.) varieties. Pakistan Journal of Botany. 41(3): 1303-1310.
• Moghadasi, L., V. Rashidi, and A. Razbab Hagigi. 2010. Evaluation of drought of durum wheat lines byuse of drought tolerance indexes. 11th Iranian Crop Sciences Congress. Shahid Beheshti University, Tehran. pp. 372-389. (In Persian).
• Mohammadi, A., E. Majidi, M.R. Bihamta, and H. Heidari Sharifabad. 2007. Evaluation of drought stress on agro-morphological characteristics in some wheat cultivars. Apply Field Crops Research. 73: 184-192. (In Persian).
• Moran J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta. 194: 346-352.
• Nouri-Ganbalani, A., G. Nouri-Ganbalani, and D. Hassanpanah. 2009. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food, Agriculture and Environment. 7(3&4): 228-234.
• Plaut, Z., B.J. Butow, C.S. Blumenthal, and C.W. Wrigley. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under postanthesis water deficit and evaluated temperature. Field Crop Research. 86: 185-198.
• Praba, M.L., J.E. Cairns, R.C. Babu, and H.R. Lafitte. 2009. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science. 195: 30-46.
• Ranjan, R., S.P. Bohra, and A.M. Jeet. 2001. Book of plant senescence. Jodhpur, Agrobios New York. pp. 18-42.
• Ritchie, S.W., H.T. Nguyen, and A.S. Haloday. 1990. Leaf water content and gas exchange parameters of two wheat genotype differing in drought resistance. Crop Science. 30: 105-111.
• Rodriguez, D.J., J. Romero-Garcia, R. Rodriguez-Garcia, and J.A.L. Sanchez. 2003. Charactrization of protein from Sunflower leaves and seeds: Relationship of biomass and seed yield. Trends in New Crops and New Uses. 1: 143-149.
• Royo, C., M. Abaza, R. Blanco, and L.F. Garcia del Moral. 2000. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal of Plant Physiology. 27: 1051-1059.
• Saeidi, M., and M. Abdoli. 2015. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Journal of Agricultural Science and Technology. 17(4): 885-898.
• Saeidi, M., A. Ahmadi, K. Postini, and M.R. Jahansooz. 2007. Evaluation of germination traits of different genotypes of wheat in osmotic stress situation and their correlations with speed of emergence and drought tolerance in Farm situation. Journal of Science and Technology of Agriculture and Natural Resources. 11: 281-293. (In Persian).
• Saeidi, M., F. Moradi, and M. Abdoli. 2017. Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran. Arid Land Research Managment. 31(2): 204-218.
• Saeidi, M., F. Moradi, A. Ahmadi, R. Spehri, G. Najafian, and A. Shabani. 2010. The effects of terminal water stress on physiological characteristics and sink-source relations in two bread wheat (Triticum aestivum L.) cultivars. Iranian Journal of Crop Science. 12(4): 392-408. (In Persian).
• Shah, N.H., and G.M. Paulsenl. 2003. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil. 257: 219-226.
• Sharifi, H.A., and H.R. Rahimian Mashhadi. 2001. Effect of drought stress, seeding density and cultivar on productivity of dryland wheat in northern Khorasan. Journal of Science and Technology of Agriculture and Natural Resources. 8(1): 115-129. (In Persian).
• Siddique, M.R., B.A. Hamid, and M.S. Islam. 2000. Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica. 41: 35-39.
• Siosemardeh, A., A. Ahmadi, K. Poustini, and V. Mohammadi. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research. 98: 222-229.
• Skovmand, B., M.P. Renolds, and I.H. Delacy. 2001. Searching genetic resources for physiological traits with potential for increasing yield. – In: Renolds, Ortiz-Monasterio, M.P., J.I. Mc Nab. (ed): Application of Physiology in Wheat Breeding. Pp. 17-28. CIMMYT, Mexico DF 2001.
• Taleahmad, S., and R. Hadad. 2010. Effect of silicon on antioxidant enzymes activities and osmotic adjustment contents in two bread wheat genotypes under drought stress conditions. Plant Seed. 26(2): 207-225.
• Tavakoli, A., A. Ahmadi, and H. Alizade. 2009. Some aspects of physiological performance of sensitive and tolerant cultivars of wheat under drought stress conditions after pollination. Iranian Journal of Crop Science. 40(1): 197-211. (In Persian).
• Yang, J., and J. Zhang. 2006. Grain filling of cereals under soil drying. New Phytology. 169: 223-236.
• Yang, J., J. Zhang, Z. Huang, Z. Wang, Q. Zhu, and L. Liu. 2002. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany. 90: 369-377.