بررسی استریولوژیک و بیوشیمیایی اثرات تیامین و اکسید روی بر روی سکوم پس از پانکراتیت تجربی ناشی از ال- آرژنین در موش صحرایی
محورهای موضوعی : تشریحرحمت الله فتاحیان دهکردی 1 * , سورن نورائی 2 , البرز یدالهی 3 , پارسا رحمانی 4
1 - گروه علوم تشریحی، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران
2 - موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران
3 - گروه علوم تشریحی، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران
4 - گروه علوم تشریحی، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران
کلید واژه: التهاب پانکراس, موش صحرایی, هیستومورفومتری, ارزیابی بیوشیمیایی, نانوذرات اکسید روی,
چکیده مقاله :
پانکراتیت حاد (AP) یک بیماری شایع و بحرانی با میزان مرگ و میر بالا به دلیل نکروز پانکراس و برخی از اندام ها است. هدف ما بررسی اثر تیامین و نانو ذره اکسید روی در درمان پانکراتیت حاد بود.روش کار :50 موش صحرایی با میانگین وزن 28 تا 32 گرم به طور تصادفی به پنج گروه تقسیم شدند: گروه 1: کنترل، 2: گروه ال-آرژنین (300 میلی گرم/100 گرم)، 3: گروه تیامین (70 میلی گرم بر کیلوگرم)، 4: گروه نانوذرات اکسید روی (1 میلی گرم بر کیلوگرم)، 5: گروه درمان ترکیبی: ال-آرژنین (300 میلی گرم/100 گرم) + تیامین (70 میلی گرم بر کیلوگرم) + نانوذرات اکسید روی (1 میلی گرم بر کیلوگرم). پس از بررسی استریولوژی برش های بافتی و اندازه گیری بیومارکرها، داده ها در سطح معنی داری 05/0p≤ تجزیه و تحلیل شدند. بر اساس نتایج، در گروه تیمار ال-آرژنین ضخامت لایههای مخاطی، عضلانی و اضافی به همراه ضخامت لایههای کل کاهش معنیداری را نشان داد (05/0p≤). همچنین در مقایسه با گروه کنترل ارزیابی سطح و تراکم لایه های مخاط و عضلانی، کاهش را همچون سطح و حجم کلی لایه ها نشان داد در حالی که افزودن تیامین و نانوذرات اکسید روی به ال-آرژنین این پارامترها را افزایش داده است. ارزیابی کلسترول افزایش سطح معنی داری را بین گروه کنترل با گروه 5 و گروه 4 ذکر کرد. تجزیه و تحلیل فاکتورهای ALT و AST حاکی از افزایش معنی دار سطح AST در گروه ال-آرژنین در مقایسه با گروه کنترل و کاهش معنی دار در سطح ALT در گروه تیامین و نانوذرات اکسید روی در مقایسه با گروه ال-آرژنین بود. بر اساس نتایج تحقیق حاضر، نانوذرات تیامین و اکسید روی اثرات افزایشی بر ضخامت، سطح و تراکم حجمی و میزان فاکتور بیوشیمیایی ALT نشان دادند.
Acute pancreatitis (AP) is a critical disease with a high mortality rate due to the necrosis of the pancreas and other organs. We aimed to study the effects of thiamine and ZnO nanoparticles (NPs) in treating AP. Fifty male rats, with an average weight of 28 to 32 grams, were randomly divided into five groups: 1: Control group, 2: L-arginine group (300 mg/100g), 3: Thiamine group (70 mg/kg), 4: ZnO NPs group (1 mg/kg), 5: Combination treatment group: L-arginine (300 mg/100g) + thiamine (70 mg/kg) + ZnO NPs (1 mg/kg). After stereological examination of tissue sections and measurement of biomarkers, the data were analyzed at a significance level of p≤ 0.05. According to the results, in the L-arginine treatment group, the thickness of the mucosal, muscular, and adventitial layers decreased in comparison to the total thickness (p≤ 0.05). Additionally, values of the surface area and density of the mucosal and muscular layers decreased, as well as the total values of these, compared to the control group. The mentioned parameters increased in the combination treatment group. Evaluation of cholesterol showed a significant increase between the control group and groups 4 and 5. Analysis of ALT and AST factors indicated a significant increase in the level of AST in L-arginine group compared to the control group, and a significant decrease in the level of ALT in comparison between the thiamine and ZnO NPs groups and the L-arginine group. Based on the results of the present research, thiamine and ZnO NPs manifested enhancing effects on the values of thickness, surface area, volume density, and level of ALT.
[1] Abdelzaher WY, Ahmed SM, Welson NN, Marraiki N, Batiha GE-S, Kamel MY. Vinpocetine ameliorates L-arginine induced acute pancreatitis via Sirt1/Nrf2/TNF pathway and inhibition of oxidative stress, inflammation, and apoptosis. Biomedicine & Pharmacotherapy. 2021; 133: 110976. doi:10.1016/j.biopha.2023.116045
[2] El Morsy EM, Ahmed MA. Carvedilol attenuates l-arginine induced acute pancreatitis in rats through modulation of oxidative stress and inflammatory mediators. Chemico-biological interactions. 2020; 327: 109181. doi:10.1016/j.cbi.2020.109181
[3] Fusco R, Cordaro M, Siracusa R, D’Amico R, Genovese T, Gugliandolo E, et al. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury. Antioxidants. 2020; 9(9): 781. doi:10.3390/antiox9090781
[4] Hu F, Lou N, Jiao J, Guo F, Xiang H, Shang D. Macrophages in pancreatitis: mechanisms and therapeutic potential. Biomedicine & Pharmacotherapy. 2020; 131: 110693. doi:10.1016/j.biopha.2020.110693
[5] Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G. Digestive enzyme supplementation in gastrointestinal diseases. Current Drug Metabolism. 2016; 17(2): 187-93. doi:10.2174/138920021702160114150137
[6] Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. Journal of the American Medical Association. 2021; 325(4): 382-90. doi:10.1001/jama.2020.20317
[7] Miki A, Ricordi C, Sakuma Y, Yamamoto T, Misawa R, Mita A, et al. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One. 2018; 13(5): e0196570. doi:10.1371/journal.pone.0196570
[8] Mirmalek SA, Gholamrezaei Boushehrinejad A, Yavari H, Kardeh B, Parsa Y, Salimi-Tabatabaee SA, et al. Antioxidant and anti-inflammatory effects of coenzyme Q10 on L-arginine-induced acute pancreatitis in rat. Oxidative Medicine and Cellular Longevity. 2016; 2016. doi:10.1155/2016/5818479
[9] Pasari LP, Khurana A, Anchi P, Saifi MA, Annaldas S, Godugu C. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomedicine & Pharmacotherapy. 2019; 112: 108629. doi:10.1016/j.biopha.2019.108629
[10] Swentek L, Chung D, Ichii H. Antioxidant therapy in pancreatitis. Antioxidants. 2021; 10(5): 657. doi:10.3390/antiox10050657
[11] Zhang X, Jin T, Shi N, Yao L, Yang X, Han C, et al. Mechanisms of pancreatic injury induced by basic amino acids differ between L-Arginine, L-Ornithine, and L-Histidine. Frontiers in Physiology. 2019; 9: 1922. doi:10.3389/fphys.2018.01922
[12] Amiri A, Dehkordi RAF, Heidarnejad MS, Dehkordi MJ. Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: a stereological and biochemical study. Biological Trace Element Research. 2018; 181: 258-64. doi:10.1007/s12011-017-1035-x
[13] Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, et al. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Archives of biochemistry and biophysics. 2017; 623: 58-63. doi:10.1016/j.abb.2017.05.006
[14] Tardy A-L, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients. 2020; 12(1): 228. doi:10.3390/nu12010228
[15] Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, et al. The relevance of thiamine evaluation in a practical setting. Nutrients. 2020; 12(9): 2810. doi:10.3390/nu12092810
[16] Manzardo AM. Thiamine deficiency and alcoholism psychopathology. Molecular Aspects of Alcohol and Nutrition. 2016: 85-94. doi:10.1016/B978-0-12-800773-0.00007-0
[17] Ott M, Werneke U. Wernicke’s encephalopathy—from basic science to clinical practice. Part 1: Understanding the role of thiamine. Therapeutic Advances in Psychopharmacology. 2020; 10: 2045125320978106. doi:10.1177/2045125320978106
[18] Abdou E, Hazell AS. Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochemical Research. 2015; 40: 353-61.
doi:10.1007/s11064-014-1430-z
[19] Fessel J. Supplemental thiamine as a practical, potential way to prevent Alzheimer's disease from commencing. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2021; 7(1): e12199.
doi:10.1002/trc2.12199
[20] Chu X, Chan GH, Evers R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug-drug interactions. Journal of Pharmaceutical Sciences. 2017; 106(9): 2357-67. doi:10.1016/j.xphs.2017.04.007
[21] Chasapis CT, Ntoupa P-SA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Archives of Toxicology. 2020; 94: 1443-60. doi:10.1007/s00204-020-02702-9
[22] Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox-and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of toxicology. 2016; 90: 1-37.
doi:10.1007/s00204-015-1579-5
[23] Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants. 2019; 8(6): 164.
doi:10.3390/antiox8060164
[24] Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food & function. 2015; 6(10): 3195-204.
doi:10.1039/c5fo00630a
[25] Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017; 9(6): 624. doi:10.3390/nu9060624
[26] Wang C, Lu J, Zhou L, Li J, Xu J, Li W, et al. Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PloS one. 2016; 11(10): e0164434.
doi:10.1371/journal.pone.0164434
[27] Fermin CR, Lee AM, Filipp SL, Gurka MJ, DeBoer MD. Serum alanine aminotransferase trends and their relationship with obesity and metabolic syndrome in United States adolescents, 1999–2014. Metabolic Syndrome and Related Disorders. 2017; 15(6): 276-82.
doi:10.1089/met.2017.0023
[28] Kelly SA, Pohle S, Wharry S, Mix S, Allen CC, Moody TS, et al. Application of ω-transaminases in the pharmaceutical industry. Chemical Reviews. 2018; 118(1): 349-67. doi:10.1021/acs.chemrev.7b00437
[29] Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, et al. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell. 2018; 175(2): 514-29. e20.
doi:10.1016/j.cell.2018.08.033
[30] Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients. 2020; 12(7): 2021.
doi:10.3390/nu12072021
[31] Infante RE, Radhakrishnan A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife. 2017; 6: e25466.
doi:10.7554/eLife.25466
[32] Ling X, Wu K, Bian C, Lu C. Research progress of urea wastewater treatment. International Core Journal of Engineering. 2021;7(9):191-7. doi:10.6919/ICJE.202109_7(9).0029
[33] Harlin A. Cellulose carbamate: production and applications. VTT Technical Research Centre of Finland. 2019.
doi:10.32040/2019.978-951-38-8707-0
[34] Affourtit C, Jastroch M, Brand MD. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radical Biology and Medicine. 2011; 50(5): 609-16.
doi:10.1016/j.freeradbiomed.2010.12.020
[35] Pal G, Behl T, Rohil V, Khandelwal M, Gupta G, Jena J. Evaluation of oxidative stress and its modulation by L-arginine and L-ascorbic acid in repetitive restraint stress model in Wistar rats. Obesity Medicine. 2020; 17:100172. doi:10.1016/j.obmed.2019.100172
[36] Li H, Qian Z, Liu Z, Liu X, Han X, Kang H. Risk factors and outcome of acute renal failure in patients with severe acute pancreatitis. Journal of Critical Care. 2010; 25(2): 225-9. doi:10.1016/j.jcrc.2009.07.009
[37] Kodydkova J, Vavrova L, Stankova B, Macasek J, Krechler T, Zak A. Antioxidant status and oxidative stress markers in pancreatic cancer and chronic pancreatitis. Pancreas. 2013; 42(4): 614-21.
doi:10.1097/MPA.0b013e318288360a
[38] Mathur P, Vaishnav S. Pathophysiology of acute kidney injury in severe acute pancreatitis-an overview. Gastroenterology and Hepatology. 2019; 10: 242-5. doi:10.15406/ghoa.2019.10.00388
[39] Maduzia D, Ceranowicz P, Cieszkowski J, Chmura A, Galazka K, Kusnierz-Cabala B, et al. Administration of warfarin accelerates the recovery in ischemia/reperfusion-induced acute pancreatitis. Journal of Physiology and Pharmacology. 2020; 71: 417-27. doi:10.26402/jpp.2020.3.13
[40] Malandrinos G, Louloudi M, Hadjiliadis N. Thiamine models and perspectives on the mechanism of action of thiamine-dependent enzymes. Chemical Society Reviews. 2006; 35(8): 684-92. doi:10.1039/b514511m
[41] Hosseini SM, Amani R, Moshrefi AH, Razavimehr SV, Aghajanikhah MH, Sokouti Z. Chronic zinc oxide nanoparticles exposure produces hepatic and pancreatic impairment in female rats. Iranian Journal of Toxicology. 2020; 14(3): 145-54. doi:10.32598/ijt.14.3.626.1
[42] Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 2019; 15(1): 4-33.
doi:10.1080/15548627.2018.1509171
[43] Scheen AJ, Lefèbvre PJ. Glucagon, from past to present: a century of intensive research and controversies. The Lancet Diabetes & Endocrinology. 2023; 11(2): 129-38. doi:10.1016/S2213-8587(22)00349-7
[44] Lin S, Hong W, Basharat Z, Wang Q, Pan J, Zhou M. Blood urea nitrogen as a predictor of severe acute pancreatitis based on the revised Atlanta criteria: timing of measurement and cutoff points. Canadian journal of Gastroenterology and Hepatology. 2017; 2017. doi:10.1155/2017/9592831
[45] Xia F, Xie L, Mihic A, Gao X, Chen Y, Gaisano HY, et al. Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage-gated calcium channel function in pancreatic β-cells. Endocrinology. 2008; 149(10): 5136-45. doi:10.1210/en.2008-0161
[46] Lu X, Liu J, Hou F, Liu Z, Cao X, Seo H, et al. Cholesterol induces pancreatic β cell apoptosis through oxidative stress pathway. Cell Stress and Chaperones. 2011; 16(5): 539-48. doi:10.1007/s12192-011-0265-7
[47] Hong W, Zimmer V, Basharat Z, Zippi M, Stock S, Geng W, et al. Association of total cholesterol with severe acute pancreatitis: a U-shaped relationship. Clinical Nutrition. 2020; 39(1): 250-7. doi:10.1016/j.clnu.2019.01.022